Skip to main content
Log in

Calculations of Avrami exponent and applicability of Johnson–Mehl–Avrami model on crystallization in Er:LiY(PO3)4 phosphate glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Preparation and thermal properties of Er3+-doped lithium–yttrium meta-phosphate glasses with a nominal composition of Er:LiY(PO3)4 were studied as a new scintillating material for neutron detection. The glassy Er:LiY(PO3)4 ingots 10 × 10 × 25 mm3 in size were prepared by quenching of the molten mixture of the starting lithium carbonate, yttrium phosphate, and phosphorus oxide in stoichiometric relations. Crystallization kinetics was experimentally studied on powder samples with particle sizes ranging from 96 to 106 μm, 200 to 212 μm, and on bulk glassy samples using the non-isothermal differential scanning calorimetry. The evaluation of the measured data was performed using the Johnson–Mehl–Avrami, Matusita and Augis–Bennett models, and the y(α) and z(α) functions. In the case of the powder samples, the model analysis of the measured data showed that the crystallization mechanism was primarily performed through volume nucleation followed by 2D and 3D growth and in the bulk one by the surface and volume nucleation with 1D growth. Obtained kinetic parameters were used for reconstruction of the crystallization peaks using various models and compared with actual experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zemenová P, Král R, Nitsch K, Knížek K, Cihlář A, Bystřický A. Characterization and crystallization kinetics of Er-doped Li2O–Y2O3–P2O5 glass studied by non-isothermal DSC analysis. J Therm Anal Calorim. 2016;125(3):1431–7.

    Article  Google Scholar 

  2. Málek J, Mitsuhashi T. Testing method for the Johnson–Mehl–Avrami equation in kinetic analysis of crystallization processes. J Am Ceram Soc. 2000;83(8):2103–5.

    Article  Google Scholar 

  3. Holubová J, Černošek Z, Černošková E, Černá A. Crystallization of supercooled liquid of selenium: the comparison of kinetic analysis of both isothermal and non-isothermal DSC data. Mater Lett. 2006;60:2429–32.

    Article  Google Scholar 

  4. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1):163–76.

    Article  CAS  Google Scholar 

  5. Mehta N, Kumar A. A study of thermal crystallization in glassy Se80Te20 and Se80In20 using DSC technique. J Therm Anal Calorim. 2006;83:401–5.

    Article  CAS  Google Scholar 

  6. Dohare C, Mehta N. Iso-conversional analysis of glass transition and crystallization in as-synthesis high yield of glassy Se98Cd2 nanorods. Appl Nanosci. 2013;3:271–80.

    Article  CAS  Google Scholar 

  7. Mahavedan S, Giridhar A, Sing AK. Calorimetric measurements on As-Sb-Se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  Google Scholar 

  8. Arora A, Shaaban ER, Singh K, Pandey OP. Non-isothermal crystallization kinetics of ZnO–BaO–B2O3–SiO2 glass. J Non-Cryst Solids. 2008;354(33):3944–51.

    Article  CAS  Google Scholar 

  9. Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non-Cryst Solids. 1983;54(3):253–75.

    Article  CAS  Google Scholar 

  10. Henderson DW. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non-Cryst Solids. 1979;30(3):301–15.

    Article  CAS  Google Scholar 

  11. Málek J, Černošková E, Švejka R, Šesták J, Van der Plaats G. Crystallization kinetics of Ge0.3Sb1.4S2.7 glass. Thermochim Acta. 1996;280/281:353–61.

    Article  Google Scholar 

  12. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  13. Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  Google Scholar 

  14. Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    Article  CAS  Google Scholar 

  15. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  16. Karamanov A, Avramov I, Arrizza L, Pascova R, Gutzow I. Variation of Avrami parameter during non-isothermal surface crystallization of glass powders with different sizes. J Non-Cryst Solids. 2012;358:1486–90.

    Article  CAS  Google Scholar 

  17. Málek J. The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.

    Article  Google Scholar 

  18. Málek J. Crystallization kinetics by thermal analysis. J Therm Anal Calorim. 1999;56:763–9.

    Article  Google Scholar 

  19. Šatava V. Mechanism and kinetics from non-isothermal TG traces. Thermochim Acta. 1971;2:423–8.

    Article  Google Scholar 

  20. Abdel-Rahim MA, Hafiz MM, Mahmoud AZ. Crystallization kinetics of overlapping phases in Se70Te15Sb15 using isoconversional methods. Prog Nat Sci Mater Int. 2015;25:169–77.

    Article  CAS  Google Scholar 

  21. Yan Z, Dang S, Wang X, Lian P. Applicability of Johnson–Mehl–Avrami model to crystallization kinetics of Zr60Al15Ni25 bulk amorphous alloy. Trans Nonferrous Met Soc China. 2008;18:138–44.

    Article  CAS  Google Scholar 

  22. Heireche L, Heireche M, Belhadji M. Kinetic study of nonisothermal crystallization in Se90-xZn10Sbx (x = 0, 2, 4, 6) chalcogenide glasses. J Cryst Process Technol. 2014;4(2):111–20.

    Article  CAS  Google Scholar 

  23. Joraid AA. Limitation of the Johnson–Mehl–Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim Acta. 2005;436:78–82.

    Article  CAS  Google Scholar 

  24. Svoboda R, Málek J. Extended study of crystallization kinetics for Se–Te glasses. J Therm Anal Calorim. 2013;111:161–71.

    Article  CAS  Google Scholar 

  25. Amami J, Férid M, Trabelsi-Ayedi M. Crystal structure and spectroscopic studies of NaGd(PO3)4. Mater Res Bull. 2005;40:2144–52.

    Article  CAS  Google Scholar 

  26. Nitsch K, Rodová M. Crystallization study of Na–Gd phosphate glass using non-isothermal DTA. J Therm Anal Calorim. 2008;91:137–40.

    Article  CAS  Google Scholar 

  27. Pilný P. OriTas program—solution for kinetic analysis of thermoanalytical data. 2013. www.petrpilny.cz; https://www.facebook.com/ProjectOriTas. Accessed 28 Dec 2017.

  28. Ray CS, Huang W, Day DE. Crystallization kinetics of a lithia–silica glass: effect of sample characteristics and thermal analysis measurement techniques. J Am Ceram Soc. 1991;74(1):60–6.

    Article  CAS  Google Scholar 

  29. Tanaka K. Structural phase transitions in chalcogenide glasses. Phys Rev B. 1989;39:1270–9.

    Article  CAS  Google Scholar 

  30. Brown ME. Some proposals for publication of kinetics papers. J Therm Anal Calorim. 2005;80:796–7.

    Google Scholar 

  31. Pustková P, Zmrhalová Z, Málek J. The particle size influence on crystallization kinetics of (GeS2)0.1(Sb2S3)0.9 glass. Thermochim Acta. 2007;466:13–21.

    Article  Google Scholar 

  32. Svoboda R, Málek J. Particle size influence on crystallization behavior of Ge2Sb2Se5 glass. J Non-Cryst Solids. 2012;358:276–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Partial support of the projects from the Ministry of Education, Youth and Sports of the Czech Republic no. LO1409, LM2015088 and CZ.02.1.01/0.0/0.0/16_013/0001406 is gratefully acknowledged. The authors would like to thank Mr. A. Cihlář for glass preparation and the Optical Laboratory of the Institute of Physics for bulk sample polishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Zemenová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemenová, P., Král, R., Rodová, M. et al. Calculations of Avrami exponent and applicability of Johnson–Mehl–Avrami model on crystallization in Er:LiY(PO3)4 phosphate glass. J Therm Anal Calorim 141, 1091–1099 (2020). https://doi.org/10.1007/s10973-019-09068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09068-w

Keywords

Navigation