Skip to main content
Log in

Stochastic Forcing in Hydrodynamic Models with Non-local Interactions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The hydrodynamical model of the collective behavior of animals consists of the Euler equation with additional non-local forcing terms representing the repulsive and attractive forces among individuals. This paper deals with the system endowed with an additional white-noise forcing and an artificial viscous term. We provide a proof of the existence of a dissipative martingale solution—a cornerstone for a subsequent analysis of the system with stochastic forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There are no associated data.

Notes

  1. For a function \(f:{\mathbb {T}}\mapsto {\mathbb {R}}\), we define its average as \((f)_{\mathbb {T}}:= \int _{\mathbb {T}}f \ \mathrm{d}x\).

  2. Here we adopt the following notation. For a general function \(f(\varrho _\varepsilon ,\mathbf{u}_\varepsilon )\), we use \(\overline{f(\varrho ,\mathbf{u})}\) to denote its weak limit (which is generaly not equal to \(f(\varrho ,\mathbf{u})\)).

References

  1. Bensoussan, A., Temam, R.: Équations stochastiques du type Navier–Stokes. J. Funct. Anal. 13, 195–222 (1973)

    Article  MATH  Google Scholar 

  2. Breit, D.: An introduction to stochastic Navier–Stokes equations. In: Bulícek, M., Feireisl, E., Pokorný, M. (eds.) New Trends and Results in Mathematical Description of Fluid Flows. Necčas Center Series, pp. 1–51. Springer, Cham (2018)

    Google Scholar 

  3. Breit, D., Feireisl, E., Hofmanová, M.: Compressible fluids driven by stochastic forcing: the relative energy inequality and applications. Commun. Math. Phys. 350(2), 443–473 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  4. Breit, D., Feireisl, E., Hofmanová, M.: Stochastically Forced Compressible Fluid Flows. De Gruyter Series in Applied and Numerical Mathematics, vol. 3. De Gruyter, Berlin (2018)

    Book  MATH  Google Scholar 

  5. Breit, D., Hofmanová, M.: Stochastic Navier–Stokes equations for compressible fluids. Indiana Univ. Math. J. 65(4), 1183–1250 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brzeźniak, Z., Ondreját, M., Seidler, J.: Invariant measures for stochastic nonlinear beam and wave equations. J. Differ. Equ. 260(5), 4157–4179 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  7. Březina, J., Mácha, V.: Inviscid limit for the compressible Euler system with non-local interactions. J. Differ. Equ. 267(7), 4410–4428 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cañizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci. 21(3), 515–539 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carrillo, J.A., Feireisl, E., Gwiazda, P., Gwiazda, A.Ś: Weak solutions for Euler systems with non-local interactions. J. Lond. Math. Soc. (2) 95(3), 705–724 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chiodaroli, E., Kreml, O., Mácha, V., Schwarzacher, S.: Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data. Trans. Am. Math. Soc. 374(4), 2269–2295 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  13. Davidson, D.: Actions, reasons, and causes. J. Philos. 60, 685–700 (1963)

    Article  Google Scholar 

  14. De Lellis, C., Székelyhidi, L., Jr.: The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Phys. D 240(14–15), 1123–1144 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Denk, R., Hieber, M., Prüss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Dennett, D.: Elbow Room: The Varieties of Free Will Worth Wanting. MIT Press, Cambridge (1984)

    Google Scholar 

  18. Diening, L., Růžička, M., Schumacher, K.: A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35(1), 87–114 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  20. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel (2009)

    Book  MATH  Google Scholar 

  21. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jakubowski, A.: The almost sure skorokhod representation for subsequences in nonmetric spaces. Teoriya Veroyatnostei i ee Primeneniya 42, 209–216 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  24. Karper, T.K., Mellet, A., Trivisa, K.: Existence of weak solutions to kinetic flocking models. SIAM J. Math. Anal. 45(1), 215–243 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Levy, N., McKenna, M.: Recent work on free will and moral responsibility. Philos. Compass 43, 96–133 (2008)

    Google Scholar 

  26. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (1995). [2013 reprint of the 1995 original] [MR1329547]

  27. Marinelli, C., Röckner, M.: On the maximal inequalities of Burkholder, Davis and Gundy. Expos. Math. 34(1), 1–26 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  28. Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, vol. 27. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  29. Strawson, P.F.: Freedom and resentment. Proc. Br. Acad. 48, 187–211 (1962)

    Google Scholar 

Download references

Acknowledgements

The work of Václav Mácha was supported by the Czech Science Foundation (GAČR), Grant Agreement GA18-05974S in the framework of RVO:67985840. The work of Pavel Ludvík was supported by the Grant IGA_PrF_2021_008 “Mathematical Models” of the Internal Grant Agency of Palacký University in Olomouc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Mácha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludvík, P., Mácha, V. Stochastic Forcing in Hydrodynamic Models with Non-local Interactions. J Theor Probab 35, 2806–2852 (2022). https://doi.org/10.1007/s10959-021-01137-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-021-01137-x

Mathematics Subject Classification (2020)

Navigation