Skip to main content

Advertisement

Log in

Porous polydimethylsiloxane filled with graphene-based material for biomedicine

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this paper, the synthesis of macro-porous polydimethylsiloxane (PDMS) sponges decorated with reduced graphene oxide and graphene is described using a top-down approach based on the sugar templating process. Among the multiple assets enjoyed by PDMS, its elasticity and porosity make possible the uniform dispersion of embedded graphene-based material into its structure. Where possible, the optical, surface and morphology properties of both porous PDMS composites and their not porous (bulk) counterparts have been studied. Scanning transmission ion microscopy (STIM), based on the reciprocity between the beam energy loss and the sample areal density, has been used to obtain the images of the sponge internal part. A detailed spatial resolution of the PDMS microstructure has been deduced by the areal density map. The homogeneous dispersion of the fillers was observed by scanning electron microscopy (SEM) and indirectly by light transmittance measures performed in several regions of the PDMS bulk. The reduced graphene oxide and graphene introduced into PDMS significantly improve its electrical conductivity. The porosity of the presented hybrid material holds a key role for good performances in microelectronics and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.M. Visco, V. Brancato, N. Campo et al., Modification in polyethylene-iron oxide joints induced by laser irradiation. Appl. Surf. Sci. 272, 99–103 (2013)

    Article  CAS  Google Scholar 

  2. X.M. He, X.J. Mu, Q. Wen, Z.Y. Wen, J. Yang, C.G. Hu, H.F. Shi, Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 9, 3714–3724 (2016)

    Article  CAS  Google Scholar 

  3. N.S. Tambe, B. Bhushan, Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications. Ultramicroscopy 105, 238–247 (2005)

    Article  CAS  Google Scholar 

  4. I.J. Chen, E. Lindner, The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces. Langmuir 23, 3118–3122 (2007)

    Article  CAS  Google Scholar 

  5. S. Soumya, P.R. Sreerekha, D. Menon, V.S. Nair, K.P. Chennazhi, Generation of a biomimetic 3D microporous nano-fibrous scaffold on titanium surfaces for better osteointegration of orthopedic implants. J. Mater. Chem. 22, 1904–1915 (2012)

    Article  CAS  Google Scholar 

  6. J. Li, X. Liu, J.M. Crook, G.G. Wallace, Development of a porous 3D graphene-PDMS scaffold for improved osseointegration. Colloids Surf. B 159, 386–393 (2017)

    Article  CAS  Google Scholar 

  7. L. Torrisi, G. Ceccio, M. Cutroneo, Laser-generated plasma by carbon nanoparticles embedded into polyethylene. Nucl. Instr. Methods B 375, 93–99 (2016)

    Article  CAS  Google Scholar 

  8. C.H. Dong, L. He, Y.F. Xiao, V.R. Gaddam, S.K. Ozdemir, Z.F. Han, G.C. Guo, L. Yang, Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing. Appl. Phys. Lett. 94, 231119 (2009)

    Article  Google Scholar 

  9. A. Piruska, I. Nikcevic, S.H. Lee, C. Ahn, W.R. Heineman, P.A. Limbach, C.J. Seliskar, The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5, 1348–1354 (2005)

    Article  CAS  Google Scholar 

  10. A.J. Marsden, D.G. Papageorgiou et al., Electrical percolation in graphene-polymer composites. 2D Materials 5, 032003 (2018)

    Article  Google Scholar 

  11. G. Wang, J. Wang et al., Enhanced dielectric properties of acrylic resin elastomerbased nanocomposite with thermally reduced graphene nanosheets. RSC Adv. 6, 98440–98448 (2016)

    Article  CAS  Google Scholar 

  12. M. Tian, Z. Wei, X. Zan et al., Thermally expanded graphene nanoplates/polydimethylsiloxane composites with high dielectric constant, low dielectric loss and improved actuated strain. Compos. Sci. Technol. 99, 37–44 (2014)

    Article  CAS  Google Scholar 

  13. N. Dubey, R. Bentini, I. Islam, T. Cao, A.H. Castro Neto, V. Rosa, Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int. 2015, 12 (2015)

    Article  Google Scholar 

  14. S. Chiba, M. Waki, Innovative power generator using dielectric elastomers (creating the foundations of an environmentally sustainable society). Sustain. Chem. Pharm. 15, 100205 (2020)

    Article  Google Scholar 

  15. A. O’Halloran, F. O’Malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 071101 (2008)

    Article  Google Scholar 

  16. H. Prahlad, R. Kornbluh, R. Pelrine, S. Stanford, J. Eckerle, S. Oh, in Polymer Power: Dielectric Elastomers and Their Applications in Distributed Actuation and Power Generation, Proceedings of ISSS 2005 International Conference on Smart Materials Structures and Systems, July 28–30, 2005, Bangalore, India

  17. F. Carpi, D. De Rossi, R. Kornbluh, R.E. Pelrine, P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers (Elsiever, Amsterdam, 2008).

    Google Scholar 

  18. S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19, 470–478 (2009)

    Article  CAS  Google Scholar 

  19. J. Gonzalez-Rivera, R. Iglio et al., Structural and thermoanalytical characterization of 3D porous PDMS foam materials: the effect of impurities derived from a sugar templating process. Polymer 10, 616 (2018)

    Article  Google Scholar 

  20. M. Cutroneo, V. Havranek, A. Mackova, P. Malinsky, A. Torrisi, L. Silipigni, P. Slepicka, D. Fajstavr, L. Torrisi, The characterisation of polydimethylsiloxane containing gold nanoparticles as a function of curing time. Surf. Interface Anal. (2021). https://doi.org/10.1002/sia.6948

    Article  Google Scholar 

  21. P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10–36 (2010)

    Article  CAS  Google Scholar 

  22. S.J. Choi, T.H. Kwon, H. Im, D.I. Moon, D.J. Baek, M.L. Seol, J.P. Duarte, Y.K. Choi, A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl. Mater. Interfaces 3, 4552–4556 (2011)

    Article  CAS  Google Scholar 

  23. C. Yu, C. Yu, L. Cui, Z. Song, X. Zhao, Y. Ma, L. Jiang, Facile preparation of the porous PDMS oil-absorbent for oil/water separation. Adv. Mater. Interfaces 4, 1600862 (2017)

    Article  Google Scholar 

  24. https://nanografi.com

  25. https://www.acsmaterial.com

  26. L. Torrisi, M. Cutroneo, A. Torrisi, G. Di Marco, B. Fazio, L. Silipigni, IR ns pulsed laser irradiation of polydimethylsiloxane in vacuum. Vacuum 177, 109361 (2020)

    Article  CAS  Google Scholar 

  27. M. Cutroneo, A. Mackova, L. Torrisi, V. Lavrentiev, Laser ion implantation of Ge in SiO2 using a post-ion acceleration system. Laser Part. Beams 35(1), 72–80 (2016)

    Article  Google Scholar 

  28. L. Torrisi, C. Gentile, A.M. Visco, N. Campo, Wetting modifications of UHMWPE surfaces induced by ion implantation. Rad. Eff. Defects Solids 158(10), 731–741 (2003)

    Article  CAS  Google Scholar 

  29. M. Cutroneo, V. Havranek et al., Micro-patterns fabrication using focused proton beam lithography. NIMB 371, 344–349 (2016)

    Article  CAS  Google Scholar 

  30. M. Cutroneo, V. Havranek, P. Malinsky et al., Micro ion beam used to optimize the quality of microstructures based on polydimethylsiloxane. NIM B 459, 137–142 (2019)

    Article  CAS  Google Scholar 

  31. www.microbeams.co.uk

  32. https://imagej.nih.gov/ij/download.html

  33. S.D.N. Lourenço, S.K. Woche, J. Bachmann, Y. Saulick, Wettability of crushed air-dried minerals. Géotech. Lett. 5(3), 173–177 (2015)

    Article  Google Scholar 

  34. H. Yan, H. Zhou, Q. Ye et al., Engineering polydimethylsiloxane with two-dimensional graphene oxide for an extremely durable superhydrophobic fabric coating. RSC Adv. 6, 66834 (2016)

    Article  CAS  Google Scholar 

  35. H. Shi, C. Wang et al., Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction. Opt Express 22(16), 19375–19385 (2014)

    Article  Google Scholar 

  36. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 268(11–12), 1818–1823 (2010)

    Article  CAS  Google Scholar 

  37. S.Z. Szilasi, J. Kokavecz, R. Huszanka, I. Rajta, Compaction of poly(dimethylsiloxane) (PDMS) due to proton beam irradiation. Appl. Surf. Sci. 257(10), 4612–4615 (2011)

    Article  CAS  Google Scholar 

  38. http://www.mit.edu/~6.777/matprops/pdms.htm

  39. W. Park, J. Hu et al., Electrical and thermal conductivities of reduced graphene oxide/polystyrene, composites. Appl. Phys. Lett. 104(11), 112101 (2014)

    Article  Google Scholar 

  40. K.I. Bolotin, Electronic transport in graphene: towards high mobility, in Graphene: Properties, Preparation, Characterisation and Devices. ed. by V. Skakalova, A.B. Kaiser (Woodhead Publishing Limited, Cambridge, 2014)

    Google Scholar 

  41. D. Sengupta, Y. Pei, A.G. PrakashKottapalli, Ultralightweight and 3D squeezable graphene-polydimethylsiloxane composite foams as piezoresistive sensors. ACS Appl. Mater. Interfaces 11(38), 35201–35211 (2019)

    Article  CAS  Google Scholar 

  42. M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skinmountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016)

    Article  CAS  Google Scholar 

  43. J. Hicks, A. Behnam, A. Ural, A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites. Appl. Phys. Lett. 95, 213103 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The research has been realized at the CANAM (Center of Accelerators and Nuclear Analytical Methods) infrastructure LM 2015056 and has been supported by project GACR 19-02482S. This publication was supported by OP RDE, MEYS, Czech Republic under the project CANAM OP, CZ.02.1.01/0.0/0.0/16_013/0001812 and by the CIMA project supported by INFN-Sezione Catania (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cutroneo.

Ethics declarations

Conflict of interest

There are no conflicts of interest with this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutroneo, M., Havranek, V., Semian, V. et al. Porous polydimethylsiloxane filled with graphene-based material for biomedicine. J Porous Mater 28, 1481–1491 (2021). https://doi.org/10.1007/s10934-021-01095-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01095-z

Keywords

Navigation