Skip to main content
Log in

Inspection of Local Wall Thinning by Different Magnetic Methods

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The applicability of three different magnetic methods, Magnetic flux leakage technique (MFL), Magnetic adaptive testing and Metal memory method (MMM) was tested for detection of an artificial slot in a system of three steel plates. It was found that MAT resulted in the best signal/noise ratio, and it is capable to detect the bottom side slot even in the three layer configuration. MFL also resulted in acceptable signal/noise ratio in the two layer configuration, but it was not able to detect the slot through two other plates. MMM was not found to be suitable for unstressed and un-magnetized slot detection in the given experimental arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Crockett, H.M., Horowitz, J.S.: Erosion in nuclear piping systems. J. Press. Vessel Technol. 132, 024501-1 (2010)

    Article  Google Scholar 

  2. Nishiguchi, I., Inada, F., Takahashi, M., Ogawa, B., Inagaki, T., Ohira, T., Iwahara, K., Yamakami, K. A review: Japanese pipe wall thinning management based on JSME rules recent R&D studies performed to enhance the rules. J. Adv. Maint. 2, 14–24 (2010/2011)

  3. Kajiwara, G.: Improvement to X-ray piping diagnostic system through simulation. J. Test. Eval. 33, 574–583 (2005)

    Google Scholar 

  4. Ju, Y.: Remote measurement of pipe wall thinning by microwaves. Adv. Nondestr. Eval. II 2, 1128–1133 (2007)

    Google Scholar 

  5. Leonard, K.R., Hinders, M.K.: Lamb wave tomography of pipe-like structures. Ultrasonic 43, 574–583 (2005)

    Article  Google Scholar 

  6. Cho, Z., Oh, W.D., Lee, J.H.: A wall thinning detection and quantification based on guided wave mode conversion features. Key Eng. Mater. 321–323, 795–798 (2006)

    Article  Google Scholar 

  7. Lee, D.H., Lee, S.J., Lee, J.H., Lee, S.H.: Analysis of round robin test for ultrasonic thickness measurement of wall thinned pipe in nuclear power plant. In: AIP Conference of Proceedings, vol. 975, pp. 1732–1738, February 28 2008

  8. Nam, K.W., Ahn, S.H.: Fracture behaviors and acoustic emission characteristics of pipes with local wall thinning. In: Key Engineering Materials, pp. 270–273

  9. Mitani, K., Mochizuki, M., Toyoda, M.: Investigation of wall thinning measurement in steel plates by electromagnetic acoustic resonance. Mater. Sci. Forum 580–582, 113–116 (2008)

    Article  Google Scholar 

  10. Kosaka, D., Kojima, F., Yamaguchi, H.: Quantitative evaluation of wall thinning in pipe wall using electromagnetic acoustic transducer. Int. J. Appl. Electromagn. Mech. 33, 1195–1200 (2010)

    Google Scholar 

  11. Schmidt, T.R.: The remote field eddy current inspection technique. Mater. Eval. 42, 225–230 (1984)

    Google Scholar 

  12. Linkous, A.I.N., McKnight, B.: Using thermography to detect and measure wall thinning. In: Lee R. Allen (ed.) Proceedings of the SPIE, Thermosense XV: An International Conference on Thermal Sensing and Imaging Diagnostic Applications, vol. 1933, pp. 26–30 (1933)

  13. Zuoying, H., Peiwen, Q., Liang, C.: 3D FEM analysis in magnetic flux leakage method. NDTE Int. 39, 61–66 (2006)

    Article  Google Scholar 

  14. Joshi, A., Udpa, L., Udpa, S., Tamburrino, A.: Adaptive wavelets for characterizing magnetic flux leakage signals from pipeline inspection. IEEE Trans. Magn. 42, 3168–3170 (2006)

    Article  Google Scholar 

  15. Li, X., Li, X., Chen, L., Qin, G., Feng, P., Huang, Z.: Steel pipeline testing using magnetic flux leakage method. In: IEEE International Conference on Industrial Technology. IEEE ICIT, pp. 1–4 (2008)

  16. Kikuchi, H., Kurisawa, Y., Ara, K., et al.: Feasibility study of magnetic flux leakage method for condition monitoring of wall thinning on tube. Int. J. Appl. Electromagn. Mech. 33, 1087–1094 (2010)

    Google Scholar 

  17. Singh, W.S., Rao, B.P., et al.: Detection of Localized damage in water wall tubes of thermal power plants using GMR sensor array based magnetic flux leakage technique. J. Nondestr. Eval. 34, 2015 (2015)

    Article  Google Scholar 

  18. Cheng, W.: Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors. IEEE Sens. J. 16, 5548–5556 (2016)

    Article  Google Scholar 

  19. Angani, C.S., Park, D.G., Kim, G.D., Kim, C.G., Cheong, Y.M.: Differential pulsed eddy current sensor for the detection of wall thinning in an insulated stainless steel pipe. J. Appl. Phys. 107, 09E720-3 (2010)

    Article  Google Scholar 

  20. Kim, J., Yang, G., Udpa, L., Udpa, S.: Classification of pulsed eddy current GMR data on aircraft structures. NDT E Int. 43, 141–144 (2010)

    Article  Google Scholar 

  21. Xie, S., Yamamoto, T., Takagi, T., Uchimoto, T.: Pulsed ECT method for evaluation of pipe wall-thinning of nuclear power plants using magnetic sensors. In: Proceedings of ENDE 2010 Conference, pp. 7–8. Szczecin, Poland, 13–16 June 2010

  22. Rao, P.B.C.: Magnetic flux lekage technique: basics. J. NonDestr. Test. Eval. 11, 7–17 (2012)

    Google Scholar 

  23. Kikuchi, H., Sato, K., Shimizu, I., Kamada, Y.: Feasibility study of application of MFL to monitoring of wall thinning under reinforcing plates in nuclear power plants. IEEE Trans. Magn. 47, 3963–3966 (2010)

    Article  Google Scholar 

  24. Kikuchi, H., Shimuzu, I., Ara, K., Kamada, Y., Kobayashi, S.: Applicability of magnetic flux leakage method for wall thinning monitoring in nuclear power plants. In: T. Chady (ed.) Electromagnetic Nondestructive Evaluation (XIV), pp. 275–281. IOS Press, Amsterdam (2011)

  25. Tomáš, I., Vértesy, G.: Magnetic adaptive testing, chapter in book. In: Omar, M. (ed.) Nondestructive Testing, InTech-d.o.o.—Open Access publisher: www.intechopen.com, (ISBN 979-953-307-487-9) (2012)

    Google Scholar 

  26. Vértesy, G., Tomáš, I., Uchimoto, T., Takagi, T.: Nondestructive investigation of wall thinning in layered ferromagnetic material by magnetic adaptive testing. NDT E Int. 47, 51–55 (2012)

    Article  Google Scholar 

  27. Vértesy, G., Tomáš, I., Uchimoto, T., Takagi, T.: Nondestructive investigation of wall thinning in doubled layer tube by magnetic adaptive testing. E-J. Adv. Maint. 4(2), 96–104 (2012)

    Google Scholar 

  28. Doubov, A.A.: A study of metal properties using the method of magnetic memory. Metal Sci. Heat Treat. 39, 401–402 (1997)

    Article  Google Scholar 

  29. Doubov, A.A.: A technique for monitoring the bends of boiler and steam-line tubes using the magnetic memory of metal. Therm. Eng. 48, 289–295 (2001)

    Google Scholar 

  30. Mandal, K., Atherton, D.L.: A study of magnetic flux-leakage signals. J. Phys. D 31(1998), 3211–3217 (1998)

    Article  Google Scholar 

  31. Udpa, S., Moore, P.O.: Nondestructive Testing Handbook, Electromagnetic Testing, ASNT 3rd edn., vol. 5, p. 230 (2004)

  32. Mayergoyz, I.D.: Mathematical Models of Hysteresis. Springer, New York (1991)

    MATH  Google Scholar 

  33. Tomáš, I., Perevertov, O.: JSAEM Studies in Applied Electromagnetics and Mechanics. In: Takagi, T., Ueasaka, M. (eds.), vol. 9, p. 533 (2001)

  34. Vértesy, G., Bálint, B., Bingler, A., Gyimóthy, S., Bilicz, S., Pávó, J.: Simulation of magnetic flux distribution for the measurement of the local thinning of ferromagnetic plates. Int. J. Appl. Electromagn. Mech. 55, 597–612 (2017)

    Article  Google Scholar 

  35. Pávó, J., Gyimóthy, S.Z., Bálint, B., Bilicz, S., Vértesy, G., Tomáš, I.: Magnetic flux simulation for the inspection of local thinning of ferromagnetic plates. Int. J. Appl. Electromagn. Mech. (2018)

  36. Sablik, M., Jiles, D.: Coupled magnetoelastic theory of magnetic and magnetostrictive hystersis. IEEE Trans. Magn. 29, 2113–2123 (1993)

    Article  Google Scholar 

  37. Vértesy, G., Gasparics, A., Szöllősy, J.: High sensitivity magnetic field sensor. Sens. Actuators, A 85, 202–208 (2000)

    Article  Google Scholar 

  38. Vértesy, G., Tomáš, I., Bálint, B., Gyimóthy, S., Pávó, J., Uchimoto, T., Takagi, T.: Investigation of the role of a nonmagnetic spacer in local wall thinning inspection. Int. J. Appl. Electromagn. Mech. (2018)

Download references

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund (Project K 111662), by the Researcher Exchange Program between the Czech Academy of Sciences and Hungarian Academy of Sciences. Co-author I.T. also appreciates financial support by project No. 14-36566G of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vértesy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vértesy, G., Gasparics, A. & Tomáš, I. Inspection of Local Wall Thinning by Different Magnetic Methods. J Nondestruct Eval 37, 65 (2018). https://doi.org/10.1007/s10921-018-0515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0515-z

Keywords

Navigation