Skip to main content
Log in

Numerical Analysis of a Model of Two Phase Compressible Fluid Flow

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a model of a binary mixture of two immiscible compressible fluids. We propose a numerical scheme and discuss its basic properties: stability, consistency, convergence. The convergence is established via the method of generalized weak solutions combined with the weak–strong uniqueness principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article and its additional files.

References

  1. Abbatiello, A., Feireisl, E., Novotný, A.: Generalized solutions to models of compressible viscous fluids. Discret. Contin. Dyn. Syst. A 41(1), 1–28 (2021)

    Article  MathSciNet  Google Scholar 

  2. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  3. Blesgen, T.: A generalization of the Navier–Stokes equations to two-phase flow. J. Phys. D Appl. Phys. 32, 1119–1123 (1999)

    Article  Google Scholar 

  4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  Google Scholar 

  5. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    Article  MathSciNet  Google Scholar 

  6. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques and Applications. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  7. Feireisl, E., Jin, B., Novotný, A.: Relative entropies, suitable weak solutions, and weak–strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14, 712–730 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Feireisl, E., Karper, T., Novotný, A.: A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 36(4), 1477–1535 (2016)

    Article  MathSciNet  Google Scholar 

  9. Feireisl, E., Lukáčová-Medvi\(\check{{\rm d}}\)ová, M., Mizerová, H., She, B.: Numerical Analysis of Compressible Fluid Flows. Springer. https://doi.org/10.1007/978-3-030-73788-7 (to appear)

  10. Feireisl, E., Lukáčová-Medvid’ová, M.: Convergence of a mixed finite element-discontinuous Galerkin scheme for the isentropic Navier–Stokes system via dissipative measure-valued solutions. Found. Comput. Math. 18(3), 703–730 (2018)

  11. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhauser, Basel (2009)

    Book  Google Scholar 

  12. Feireisl, E., Petcu, M., Pražák, D.: Relative energy approach to a diffuse interface model of a compressible two-phase flow. Math. Methods Appl. Sci. 42(5), 1465–1479 (2019)

    Article  MathSciNet  Google Scholar 

  13. Gallouët, T., Maltese, D., Novotný, A.: Error estimates for the implicit MAC scheme for the compressible Navier–Stokes equations. Numer. Math. 141(2), 495–567 (2019)

    Article  MathSciNet  Google Scholar 

  14. Germain, P.: Weak–strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. 13(1), 137–146 (2011)

    Article  MathSciNet  Google Scholar 

  15. Giorgini, A., Temam, R.: Weak and strong solutions to the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system. J. Math. Pures Appl. 144, 194–249 (2020)

  16. Hošek, R., She, B.: Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension. J. Numer. Math. 26(3), 111–140 (2018)

    Article  MathSciNet  Google Scholar 

  17. Karper, T.: A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125(3), 441–510 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation with convection. SIAM J. Numer. Anal. 47(4), 2660–2685 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kwon, Y.-S., Novotny, A.: Consistency, convergence and error estimates for a mixed finite element-finite volume scheme to compressible Navier–Stokes equations with general inflow/outflow boundary data. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/draa093 (2020)

  20. Masmoudi, N.: Incompressible inviscid limit of the compressible Navier–Stokes system. Ann. Inst. Henri Poincaré Anal. Nonlinéaire 18, 199–224 (2001)

    Article  MathSciNet  Google Scholar 

  21. Saint-Raymond, L.: Hydrodynamic limits: some improvements of the relative entropy method. Ann. Inst. Henri Poincaré Anal. Nonlinéaire 26, 705–744 (2009)

    Article  MathSciNet  Google Scholar 

  22. Sprung, B.: Upper and lower bounds for the Bregman divergence. J. Inequal. Appl. 2019(4), 12 (2019)

    MathSciNet  Google Scholar 

  23. Williams, S.A.: Analyticity of the boundary for Lipschitz domains without Pompeiu property. Indiana Univ. Math. J. 30(3), 357–369 (1981)

    Article  MathSciNet  Google Scholar 

  24. Witterstein, G.: A phase field model for stem cell differentiation. AIP Conf. Proc. 971, 69 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the mobility Project 8J20FR007 Barrande 2020 of collaboration between France and Czech Republic. The grantor in the Czech Republic is the Ministry of Education, Youth and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mădălina Petcu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Useful Equality for the Diffusive Upwind Flux

Here we prove Lemma 5.5.

Proof

First, recalling the discrete operators defined in Sect. 5.1 we obtain by direct calculation that

Next, it is easy to get

Summing the two identities above we finish the proof of Lemma 5.5. \(\square \)

1.2 Existence of a Numerical Solution

Here we prove Lemma 5.9, that is the existence of a solution and positivity of density for the numerical method (5.6). We shall show the proof via a topological degree theory, which was reported in Gallouët et al. [13].

Theorem A.1

([13, Theorem A.1] Topological degree theory.) Let M and N be two positive integers. Let \( C_1>\varepsilon >0\) and \(C_2>0\) be real numbers. Let

$$\begin{aligned}&V = \{ (r,U) \in R ^M \times R ^N; \ r_i >0 \; \forall \; i=1,\dots , M \}, \\&W = \{ (r,U) \in R ^M \times R ^N; | U | \le C_2 \text { and } \varepsilon< r_i < C_1 \; \forall \; i=1, \dots , M \}. \end{aligned}$$

Let \({{\mathcal {F}}}\) be a continuous function mapping \(V \times [0,1]\) to \(R ^M \times R ^N\) and satisfying:

  1. 1.

    \( f \in W \) if \( f \in V \) satisfies \( F(f,\zeta )={\mathbf {0}}\) for all \( \zeta \in [0,1] \);

  2. 2.

    The equation \({{\mathcal {F}}}(f, 0)={\mathbf {0}}\) is a linear system with respect to f and admits a solution in W.

Then there exists an \( f \in W\) such that \({{\mathcal {F}}}(f,1) ={\mathbf {0}}\).

Now we are ready to prove Lemma 5.9.

Proof of Lemma 5.9

The idea of the proof is to construct a mapping \({{\mathcal {F}}}\) that satisfies Theorem A.1. We begin with the definition of the spaces V and W

$$\begin{aligned}&V =\left\{ ( \varrho _h^k, U_h^k) \in Q_h\times {\mathfrak {Q}}_h,\ \varrho _h^k>0 \right\} ,\\&W =\left\{ ( \varrho _h^k, U_h^k ) \in Q_h\times {\mathfrak {Q}}_h,\ \Vert U_h^k\Vert \le C_2, \epsilon< \varrho _h^k <C_1 \right\} , \end{aligned}$$

where \(U_h:=(\mathbf{u}_h, {\mathfrak {c}}_h) \in {\mathbf {V}}_h\times X_h=: {\mathfrak {Q}}_h\), \(\varrho _h>c\) means \(\varrho _K>c\) for all \(K\in {\mathcal {T}}\), and the norm \(\Vert U_h\Vert \) is given by \(\Vert U_h\Vert \equiv \Vert \mathbf{u}_h\Vert _{L^6} + \Vert {\mathfrak {c}}_h\Vert _{L^6}\). Obviously, the dimensions of the spaces \(Q_h\) and \({\mathfrak {Q}}_h\) are finite.

Next, for \(\zeta \in [0,1]\) and \(U^\star =(\mathbf{u}^\star , {\mathfrak {c}}^\star , \mu ^\star )\) we define the following mapping

$$\begin{aligned} {{\mathcal {F}}} : \ V \times [0,1]\rightarrow Q_h\times {\mathfrak {Q}}_h, \quad (\varrho _h^k,U_h^k, \zeta )\longmapsto ( \varrho ^\star , U^\star ) ={{\mathcal {F}}}(\varrho _h^k,U_h^k ,\zeta ), \end{aligned}$$

where \(( \varrho ^\star , U^\star )\) is defined by:

(A.1a)
(A.1b)
(A.1c)

for any \(\phi _h \in Q_h\) and \(\varvec{\phi }_h \times \psi _h \in {\mathfrak {Q}}_h\), where \(\varvec{\phi }_h=(\phi _{1,h}, \dots , \phi _{d,h})\), and the discrete Laplace operator is defined by the following equality

$$\begin{aligned} - \int _{\Omega } \Delta _h{\mathfrak {c}}_h\psi _h \,\mathrm{d} {x} = (1-\zeta ) \int _{\Omega } {\mathfrak {c}}_h\psi _h \,\mathrm{d} {x} + B({\mathfrak {c}}_h,\psi _h) . \end{aligned}$$

It is obvious that \({{\mathcal {F}}}\) is well defined and continuous since the values of \(\varrho ^\star \) and \(U^\star =(\mathbf{u}^\star , {\mathfrak {c}}^\star )\) can be determined by setting \(\phi _h = 1_{K}\), \(K\in {\mathcal {T}}\), in (A.1a), \(\phi _{i,h}=1_\sigma , \sigma \in {\mathcal {E}}\) with \(\phi _{j,h}=0\) for \(j\ne i, \; i,j \in (1,\ldots , d)\) in (A.1b), and \(\psi _h =1_{P}\), P being a degree of freedom of the space \(X_h\) in (A.1c), respectively.

With the above definitions, we aim to show that both hypotheses of Theorem A.1 hold.

We first aim to prove that Hypothesis 1 of Theorem A.1 holds. To this end, we suppose \((\varrho _h^k,U_h^k ) \in Q_h\times {\mathfrak {Q}}_h\) is a solution to \({{\mathcal {F}}}(\varrho _h^k,U_h^k , \zeta )= {\mathbf {0}}\) for any \(\zeta \in [0,1]\). Then the system (A.1) becomes

(A.2a)
(A.2b)
(A.2c)

Taking \(\phi _h=1\) as a test function in (A.2a) we immediately obtain

$$\begin{aligned} \Vert \varrho _h^k\Vert _{L^1}= \int _{\Omega } \varrho _h^k \,\mathrm{d} {x} = \int _{\Omega } \varrho _h^{k-1} \,\mathrm{d} {x} \equiv M_0 >0. \end{aligned}$$
(A.3)

Further, following the proof of the energy stability (5.16) we know that

$$\begin{aligned}&D_t \int _{\Omega } \left( \frac{1}{2} \varrho _h\left|\widehat{\mathbf{u}_h^k} \right|^2 + \frac{1}{2} |\Vert {\mathfrak {c}}_h^k\Vert |_B^2+ \zeta F({\mathfrak {c}}_h^k) + \frac{1}{2} (1-\zeta ) |{\mathfrak {c}}_h^k|^2+ P(\varrho _h^k) \right) \,\mathrm{d} {x}+ \nu \Vert \nabla _h\mathbf{u}_h^k\Vert _{L^2}^2 \\&\quad + \zeta \eta \Vert \mathrm{div}_h\mathbf{u}_h^k\Vert _{L^2}^2 + \Vert D_t {\mathfrak {c}}_h^k + \zeta \mathbf{u}_h^k \cdot \nabla _h{\mathfrak {c}}_h^k \Vert _{L^2}^2 \le 0. \end{aligned}$$

Then we may apply the discrete Sobolev’s inequality stated in Lemma 5.4 to derive

$$\begin{aligned} \Vert U_h^k \Vert \equiv \Vert \mathbf{u}_h^k\Vert _{L^6} + \Vert {\mathfrak {c}}_h^k \Vert _{L^6} \le C_2, \end{aligned}$$
(A.4)

where \(C_2>0\) depends on the initial data of the problem.

Next, let \(K\in {\mathcal {T}}\) be such that \(\varrho _K^k = \min _{L \in {\mathcal {T}}} \varrho _h^k|_L\). Now setting \(\phi _h = 1_K\) and noticing we find

Thus \( \varrho _h^k \ge \varrho _K^k \ge \frac{\varrho ^{k-1}_{K} }{1 + \Delta t\zeta \left|(\mathrm{div}_h\mathbf{u}_h^k)_K \right| } >0. \) Consequently, by virtue of (A.4) \( \varrho _h^k > \epsilon \), where \(\epsilon \) depends only on the data of the problem. Further, we get from (A.3) that \( \varrho _h^k \le \frac{ M_0 }{\min _{K\in {\mathcal {T}}} |K|}\), which indicates the existence of \(C_1>0\) such that \(\varrho _h^k <C_1\). Therefore, Hypothesis 1 of Theorem A.1 is satisfied.

We also need to show that Hypothesis 2 of Theorem A.1 is satisfied. Let \(\zeta =0\) then the system \({{\mathcal {F}}}(\varrho _h^k,U_h^k,0 )={\mathbf {0}}\) reads

(A.5a)
(A.5b)
(A.5c)

From (A.5a) it is obvious \(\varrho _h^k = \varrho _h^{k-1}>0\). Substituting (A.5a) into (A.5b) we arrive at a linear system for \(\mathbf{u}_h^k\) with a symmetric positive definite matrix. Thus (A.5b) admits a unique solution. Further, by noticing (A.5c) is a linear system of \({\mathfrak {c}}_h^k\) with a positive definite matrix, we know that it admits a unique solution \({\mathfrak {c}}_h^k\).

Consequently, Hypothesis 2 of Theorem A.1 is satisfied.

We have shown that both hypotheses of Theorem A.1 hold. Applying Theorem A.1 finishes the proof of Lemma 5.9. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feireisl, E., Petcu, M. & She, B. Numerical Analysis of a Model of Two Phase Compressible Fluid Flow. J Sci Comput 89, 14 (2021). https://doi.org/10.1007/s10915-021-01624-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01624-7

Keywords

Navigation