Skip to main content
Log in

Convergence and Error Estimates for a Finite Difference Scheme for the Multi-dimensional Compressible Navier–Stokes System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We prove convergence of a finite difference approximation of the compressible Navier–Stokes system towards the strong solution in \(R^d,\)\(d=2,3,\) for the adiabatic coefficient \(\gamma >1\). Employing the relative energy functional, we find a convergence rate which is uniform in terms of the discretization parameters for \(\gamma > d/2\). All results are unconditional in the sense that we have no assumptions on the regularity nor boundedness of the numerical solution. We also provide numerical experiments to validate the theoretical convergence rate. To the best of our knowledge this work contains the first unconditional result on the convergence of a finite difference scheme for the unsteady compressible Navier–Stokes system in multiple dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ball, J.M.: A Version of the Fundamental Theorem for Young Measures. Lecture Notes in Physics, vol. 344, pp. 207–215. Springer, Berlin (1989)

    MATH  Google Scholar 

  2. Cho, Y., Choe, H.J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method. Volume 48 of Springer Series in Computational Mathematics, xiv+572 pp. Springer, Cham. Analysis and Applications to Compressible Flow (2015)

  5. Chainais-Hillairet, C., Droniou, J.: Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions. IMA J. Numer. Anal. 31(1), 61–85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Dissipative measure-valued solutions to the compressible Navier–Stokes system. Calc. Var. Partial Dif. 55(6), 55–141 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14(4), 717–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feireisl, E., Lukáčová-Medvid’ová, M.: Convergence of a mixed finite element-finite volume scheme for the isentropic Navier–Stokes system via the dissipative measure-valued solutions. Found. Comput. Math. 18(3), 703–730 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: A finite volume scheme for the Euler system inspired by the two velocities approach. Numer. Math. 144, 89–132 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feireisl, E., Lukáčová-Medvid’ová, M., She, B.: Convergence of a finite volume scheme for the compressible Navier–Stokes system. ESAIM: M2AN 53(6), 1957–1979 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: On the convergence of a finite volume scheme for the compressible Navier–Stokes–Fourier system. arXiv:1903.08526

  12. Feireisl, E., Lukáčová-Medvid’ová, M., Nečasová, Š., Novotný, A., She, B.: Asymptotic preserving error estimates for numerical solutions of compressible Navier–Stokes equations in the low Mach number regime. Multiscale Model. Simul. 16(1), 150–183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids, 2nd edn. Birkhäuser, Basel (2017)

    Book  MATH  Google Scholar 

  14. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gallouët, T., Gastaldo, L., Herbin, R., Latché, J.C.: An unconditionally stable pressure correction scheme for the compressible barotropic Navier–Stokes equations. ESAIM: M2AN 42(2), 303–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gallouët, T., Maltese, D., Novotný, A.: Error estimates for the implicit MAC scheme for the compressible Navier–Stokes equations. Numer. Math. 141, 495–567 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gallouët, T., Herbin, R., Maltese, D., Novotný, A.: Error estimates for a numerical approximation to the compressible barotropic Navier–Stokes equations. IMA J. Numer. Anal. 36(2), 543–592 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haack, J., Jin, S., Liu, J.G.: An all-speed asymptotic preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12(4), 955–980 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hošek, R., She, B.: Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension. J. Numer. Math. 26(3), 111–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jovanović, V.: An error estimate for a numerical scheme for the compressible Navier–Stokes system. Kragujevac J. Math. 30, 263–275 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Karper, T.: A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125(3), 441–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lions, P.L.: Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models. xiv+348pp. Oxford (1998)

  23. Liu, B.: The analysis of a finite element method with streamline diffusion for the compressible Navier–Stokes equations. SIAM J. Numer. Anal. 38, 1–16 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, B.: On a finite element method for three-dimensional unsteady compressible viscous flows. Numer. Methods Partial Differ. Equ. 20, 432–449 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  26. Sun, Y., Wang, C., Zhang, Z.: A Beale–Kato–Majda blow-up criterion for the 3-D compressible Navier–Stokes equations. J. Math. Pures Appl. 95(1), 36–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Valli, A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. 130, 197–213 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bangwei She.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hana Mizerová and Bangwei She thank Czech Sciences Foundation (GAČR), Grant Agreement 18-05974S for supporting the research. The Institute of Mathematics of the Czech Academy of Sciences is supported by RVO:67985840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizerová, H., She, B. Convergence and Error Estimates for a Finite Difference Scheme for the Multi-dimensional Compressible Navier–Stokes System. J Sci Comput 84, 25 (2020). https://doi.org/10.1007/s10915-020-01278-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01278-x

Keywords

Navigation