Skip to main content
Log in

Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass

  • Research
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The metabolome represents an important functional trait likely important to plant invasion success, but we have a limited understanding of whether the entire metabolome or targeted groups of compounds confer an advantage to invasive as compared to native taxa. We conducted a lipidomic and metabolomic analysis of the cosmopolitan wetland grass Phragmites australis. We classified features into metabolic pathways, subclasses, and classes. Subsequently, we used Random Forests to identify informative features to differentiate five phylogeographic and ecologically distinct lineages: European native, North American invasive, North American native, Gulf, and Delta. We found that lineages had unique phytochemical fingerprints, although there was overlap between the North American invasive and North American native lineages. Furthermore, we found that divergence in phytochemical diversity was driven by compound evenness rather than metabolite richness. Interestingly, the North American invasive lineage had greater chemical evenness than the Delta and Gulf lineages but lower evenness than the North American native lineage. Our results suggest that metabolomic evenness may represent a critical functional trait within a plant species. Its role in invasion success, resistance to herbivory, and large-scale die-off events common to this and other plant species remain to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Metabolomic and lipidomic data is available at https://www.ebi.ac.uk/metabolights/MTBLS4896, including the description of populations used in this study.

References

  • Allen WJ, Meyerson LA, Cummings D, Anderson J, Bhattarai GP, Cronin JT (2017) Biogeography of a plant invasion: drivers of latitudinal variation in enemy release. Global Ecol Biogeogr 26:435–446

    Article  Google Scholar 

  • Allen WJ, Meyerson LA, Flick AJ, Cronin JT (2018) Intraspecific variation in indirect plant–soil feedbacks influences a wetland plant invasion. Ecology 99:1430–1440

    Article  PubMed  Google Scholar 

  • Anaya AL, Cruz-Ortega R, Waller GR (2006) Metabolism and ecology of purine alkaloids. Fron Biosci 11(3):2354–2370

    Article  CAS  Google Scholar 

  • Barrett DP, Groenteman R, Fowler SV, Subbaraj AK, Clavijo-McCormick A (2021) Metabolomics analysis of host plant biochemistry could improve the effectiveness and safety of classical weed biocontrol. Biol Control 160:104663

    Article  CAS  Google Scholar 

  • Bhattarai GP, Meyerson LA, Anderson J, Cummings D, Allen WJ, Cronin JT (2017) Biogeography of a plant invasion: genetic variation and plasticity in latitudinal clines for traits related to herbivory. Ecol Monogr 87:57–75

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bickford WA, Zak DR, Kowalski KP, Goldberg DE (2020) Differences in rhizosphere microbial communities between native and non-native Phragmites australis may depend on stand density. Ecol Evol 10:11739–11751

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowen JL, Kearns PJ, Byrnes JEK, Wigginton S, Allen WJ, Greenwood M, Tran K, Yu J, Cronin JT, Meyerson LA (2017) Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plant. Nat Comm 8:433

    Article  Google Scholar 

  • Brix H (1999) The European research project on reed dieback and progression (EUREED). Limnologica 29:5–10

    Article  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Cappuccino N, Arnason JT (2006) Novel chemistry of invasive exotic plants. Biol Lett 2:189–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carson HL (1990) Increased genetic variance after a population bottleneck. Trends Ecol Evol 5:228–230

    Article  CAS  PubMed  Google Scholar 

  • Cronin JT, Bhattarai GP, Allen WJ, Meyerson LA (2015) Biogeography of a plant invasion: plant–herbivore interactions. Ecol 96:1115–1127

    Article  Google Scholar 

  • Cronin JT, Johnston J, Diaz R (2020) Multiple potential stressors and dieback of Phragmites australis in the Mississippi River Delta, USA: implications for restoration. Wetlands 40:2247–2261

    Article  Google Scholar 

  • Croy JR, Allen WJ, Wigginton S, Meyerson LA, Cronin JT (2020) Lineage and latitudinal variation in Phragmites australis tolerance to herbivory: Implications for invasion success. Oikos 129:1341–1357

    Article  Google Scholar 

  • Čuda J, Skálová H, Meyerson LA, Pyšek P (2021) Regeneration of Phragmites australis from rhizome and culm fragments: an experimental test of environmental effects, population origin and invasion status. Preslia 93:237–254

    Article  Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431

    Article  PubMed  Google Scholar 

  • de Mendiburu F, Yaseen M (2020) agricolae: Statistical Procedures for Agricultural Research. R Package Version 1:1–4

    Google Scholar 

  • Di Castri F (1989) History of biological invasions with special emphasis on the Old World. Biological invasions: a global perspective, pp 1–30

  • Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E, Greiner R (2016) ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminformatics 8:1–20

    Article  Google Scholar 

  • Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015). Searching molecular structure databases with tandem mass spectra using CSI: FingerID. P Natl Acad Sci 112:12580-12585

  • Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, Böcker S (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16:299–302

    Article  PubMed  Google Scholar 

  • Dyer LA, Philbin CS, Ochsenrider KM, Richards LA, Massad TJ, Smilanich AM, Forister ML, Parchman TL, Galland LM, Hurtado PJ et al (2018) Modern approaches to study plant–insect interactions in chemical ecology. Nat Rev Chem 2:50–64

    Article  CAS  Google Scholar 

  • El-Mallakh RS, Brar KS, Yeruva RR (2019) Cardiac glycosides in human physiology and disease: update for entomologists. Insects 10(4):102

    Article  PubMed  PubMed Central  Google Scholar 

  • Eller FJ, Sorrell BK, Lambertini C, Whigham DF, Hazelton ELG, Skalova H, Brix H, Cronin JT, Caplan JS, Kettenring KM et al (2017) The cosmopolitan model species Phragmites australis: Ecophysiology and responses to global change. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01833

    Article  PubMed  PubMed Central  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  • Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol 184:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Conradi P, Defossez E, Delavallade A, Descombes P, Pitteloud C, Glauser G, Pellissier L, Rasmann S (2022) The effect of community-wide phytochemical diversity on herbivory reverses from low to high elevation. J Ecol 110:46–56

    Article  CAS  Google Scholar 

  • Fortuna TM, Eckert S, Harvey JA, Vet LEM, Muller C, Gols R (2014) Variation in plant defences among populations of a range-expanding plant: consequences for trophic interactions. New Phyto 204:989–999

    Article  Google Scholar 

  • Fridley JD (2012) Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature 485:359–362

    Article  CAS  PubMed  Google Scholar 

  • Fridley JD, Craddock A (2015) Contrasting growth phenology of native and invasive forest shrubs mediated by genome size. New Phyto 207:659–668

    Article  CAS  Google Scholar 

  • Genuer R, Poggi JM, Tuleau-Malot C (2010) Variable selection using random forests. Pattern Recogn Lett 31:2225–2236

    Article  Google Scholar 

  • Glassmire AE, Philbin C, Richards LA, Jeffrey CS, Snook JS, Dyer LA (2019) Proximity to canopy mediates changes in the defensive chemistry and herbivore loads of an understory tropical shrub, Piper kelleyi. Ecol Lett 22:332–341

    Article  PubMed  Google Scholar 

  • Glassmire AE, Zehr LN, Wetzel WC (2020) Disentangling dimensions of phytochemical diversity: alpha and beta have contrasting effects on an insect herbivore. Ecol 101:e03158

    Article  Google Scholar 

  • Guo R, Jiao D, Zhou J, Zhong X, Gu F, Liu Q (2019) Metabolic response and correlations between ions and metabolites in Phragmites communis under long-term salinity toxicity. Plant Physiol Bioch 139:651–659

    Article  CAS  Google Scholar 

  • Guo WY, Lambertini C, Pyšek P, Meyerson LA, Brix H (2018) Living in two worlds: Evolutionary mechanisms act differently in the native and introduced ranges of an invasive plant. Ecol Evol 8:2440–2452

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison JG, Philbin CS, Gompert Z, Forister GW, Hernandez-Espinoza L, Sullivan BW, Wallace IS, Beltran L, Dodson CD, Francis JS et al (2018) Deconstruction of a plant-arthropod community reveals influential plant traits with nonlinear effects on arthropod assemblages. Funct Ecol 32:1317–1328

    Article  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochem 68(22–24):2831–2846

    Article  CAS  Google Scholar 

  • Hauber DP, Saltonstall K, White DA, Hood CS (2011) Genetic variation in the common reed, Phragmites australis, in the Mississippi River Delta marshes: evidence for multiple introductions. Estuar Coasts 34:851–862

    Article  CAS  Google Scholar 

  • Haug K, Cochrane K, Nainala VC, Williams M, Chang J, Jayaseelan KV, O’Donovan C (2020) MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res 48:D440–D444

    CAS  PubMed  Google Scholar 

  • Hughes AR, Stachowicz JJ, Williams SL (2009) Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia 159:725–733

    Article  PubMed  Google Scholar 

  • Hunter MD (2016) The phytochemical landscape: linking trophic interactions and nutrient dynamics. Princeton University Press, Princeton, USA

    Book  Google Scholar 

  • Jeschke JM (2014) General hypotheses in invasion ecology. Divers Distrib 20:1229–1234

    Article  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Kalske A, Luntamo N, Salminen JP, Ramula S (2022) Introduced populations of the garden lupine are adapted to local generalist snails but have lost alkaloid diversity. Biol Invasions 24:51–65

    Article  Google Scholar 

  • Kalu CM, Oduor Ogola HJ, Selvarajan R, Tekere M, Ntushelo K (2021) Fungal and metabolome diversity of the rhizosphere and endosphere of Phragmites australis in an AMD-polluted environment. Heliyon 7:e06399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneta M, Sugiyama N (1972) The Constituents of Arthraxon hispidus Makino, Miscanthus tinctorius Hackel, Miscanthus sinensis Anderss, and Phragmites communis Trinius. B Chem Soc Jpn 45(2):528–531

    Article  CAS  Google Scholar 

  • Kessler A, Kalske A (2018) Plant secondary metabolite diversity and species interactions. Annu Rev Ecol Evol S 49:115–138

    Article  Google Scholar 

  • Kim HW, Wang M, Leber CA, Nothias LF, Reher R, Kang KB, Van Der Hooft JJ, Dorrestein PC, Gerwick WH, Cottrell GW (2021) NPClassifier: a deep neural network-based structural classification tool for natural products. J Nat Prod 84:2795–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight IA, Cronin JT, Gill M, Nyman JA, Wilson BE, Diaz R (2020) The role of plant phenotype, salinity, and infestation by the Roseau Cane Scale in the dieback of Phragmites australis in the Mississippi River Delta, Louisiana, USA. Wetlands 40:1327–1337

    Article  Google Scholar 

  • Knight IA, Wilson BE, Gill M, Aviles L, Cronin JT, Nyman JA, Schneider SA, Diaz R (2018) Invasion of Nipponaclerda biwakoensis (Hemiptera: Aclerdidae) and Phragmites australis dieback in southern Louisiana, USA. Biol Invasions 20:2739–2744

    Article  Google Scholar 

  • Lambert AM, Casagrande RA (2007) Susceptibility of native and non-native common reed to the non-native mealy plum aphid (Homoptera: Aphididae) in North America. Environ Entomol 36:451–457

    Article  PubMed  Google Scholar 

  • Lambertini C, Mendelssohn IA, Gustafsson MHG, Olesen B, Riis T, Sorrell BK, Brix H (2012) Tracing the origin of Gulf Coast Phragmites (Poaceae): a story of long-distance dispersal and hybridization. Am J Bot 99:538–551

    Article  CAS  PubMed  Google Scholar 

  • Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Pausas JG, Pérez-Harguindeguy N, Roumet C, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail?. Terrestrial ecosystems in a changing world, pp 149–164.

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York, NY

    Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • Macel M, de Vos RCH, Jansen JJ, van der Putten WH, van Dam NM (2014) Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners. Ecol Evol 4:2777–2786

    Article  PubMed  PubMed Central  Google Scholar 

  • Macel M, van Dam NM, Keurentjes JJB (2010) Metabolomics: the chemistry between ecology and genetics. Mol Ecol Resour 10:583–593

    Article  CAS  PubMed  Google Scholar 

  • Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373

    Article  Google Scholar 

  • Maynard LD, Slinn HL, Glassmire AE, Matarrita-Carranza B, Dodson CD, Nguyen TT, Burroughs MJ, Dyer LA, Jeffrey CS, Whitehead SR (2020) Secondary metabolites in a neotropical shrub: spatiotemporal allocation and role in fruit defense and dispersal. Ecology 101:e03192

    Article  PubMed  Google Scholar 

  • Meadows RE, Saltonstall K (2007) Distribution of native and introduced Phragmites australis in freshwater and oligohaline tidal marshes of the Delmarva peninsula and southern New Jersey. J Torrey Bot Soc 134:99–107

    Article  Google Scholar 

  • Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208

    Article  Google Scholar 

  • Meyerson LA, Viola DV, Brown RN (2010) Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol Invasions 12:103–111

    Article  Google Scholar 

  • Meyerson LA, Lambertini C, McCormick M, Whigham DF (2012) Hybridization of common reed in North America? The answer is blowing in the wind. AoB Plants pls022. https://doi.org/10.1093/aobpla/pls1022.

  • Meyerson LA, Cronin JT, Bhattarai GP, Brix H, Lambertini C, Lucanova M, Rinehart S, Suda J, Pyšek P (2016a) Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores. Biol Invasions 18:2531–2549

    Article  Google Scholar 

  • Meyerson LA, Cronin JT, Pyšek P (2016b) Phragmites as a model organism for studying plant invasions. Biol Invasions 18:2421–2431

    Article  Google Scholar 

  • Meyerson LA, Pyšek P, Lučanová M, Wigginton S, Tran CT, Cronin JT (2020) Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere 11:e03145

    Article  Google Scholar 

  • Mozdzer TJ, Brisson J, Hazelton EL (2013) Physiological ecology and functional traits of North American native and Eurasian introduced Phragmites australis lineages. AoB Plants 5:plt048

    Article  PubMed Central  Google Scholar 

  • Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, Protsyuk I, Ernst M, Tsugawa H, Fleischauer M, Aicheler F (2020) Feature-based molecular networking in the GNPS analysis environment. Nat Methods 17:905–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmoto T (1969) riterpenoids and the related compounds from graminaceous plants. Yakugaku Zasshi 89:1682–1687

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H et al. (2019). Package ‘vegan’. Community ecology package, version 2:1-295

  • Packer JG, Meyerson LA, Richardson DM, Brundu G, Allen WJ, Bhattarai GP, Brix H, Canavan S, Castiglioni S, Cicatelli A et al (2017) Global networks for invasion science: benefits, challenges and guidelines. Biol Invasions 19:1081–1096

    Article  Google Scholar 

  • Pan S, Zhang J, Pan H, Li K, Wu J (2021) Herbivore identity and intensity interact to influence plant metabolic response to herbivory. Arthropod-Plant Inte 15:285–298

    Article  Google Scholar 

  • Philbin CS, Dyer LA, Jeffrey CS, Glassmire AE, Richards LA (2022) Structural and compositional dimensions of phytochemical diversity in the genus Piper reflect distinct ecological modes of action. J Ecol 110:57–67

    Article  CAS  Google Scholar 

  • Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:1–11

    Article  Google Scholar 

  • Pyšek P, Richardson DM (2006) The biogeography of naturalization in alien plants. J Biogeogr 33:2040–2050

    Article  Google Scholar 

  • Pyšek P, Skálová H, Čuda J, Guo WY, Suda J, Doležal J, Kauzál O, Lambertini C, Lučanová M, Mandáková T et al (2018) Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology 99:79–90

    Article  PubMed  Google Scholar 

  • Pyšek P, Skálová H, Čuda J, Guo WY, Doležal J, Kauzál O, Lambertini C, Pyšková K, Brix H, Meyerson LA (2019) Physiology of a plant invasion: biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia 91:51–75

    Article  Google Scholar 

  • Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P et al (2020a) Scientists’ warning on invasive alien species. Biol Rev 95:1511–1534

    Article  PubMed  Google Scholar 

  • Pyšek P, Čuda J, Šmilauer P, Skálová H, Chumová Z, Lambertini C, Lučanová M, Ryšavá H, Trávníček P, Šemberová K et al (2020b) Competition among native and invasive Phragmites australis populations: An experimental test of the effects of invasion status, genome size, and ploidy level. Ecol Evol 10:1106–1118

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinn PJ, Williams WP (1979) Plant lipids and their role in membrane function. Prog Biophys Mol Biol 34:109–173

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rejmánek M, Richardson D (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Reusch TB, Hughes AR (2006) The emerging role of genetic diversity for ecosystem functioning: estuarine macrophytes as models. Estuar Coast 29:159–164

    Article  Google Scholar 

  • Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD, Jeffrey CS (2015) Phytochemical diversity drives plant–insect community diversity. P Natl Acad Sci 112:10973–10978

    Article  CAS  Google Scholar 

  • Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB (2013) Package ‘mass’. Cran r 538: 113-120

  • Rudrappa T, Bonsall J, Gallagher JL, Seliskar DM, Bais HP (2007) Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J Chem Ecol 33:1898–1918

    Article  CAS  PubMed  Google Scholar 

  • Salazar D, Lokvam J, Mesones I, Pilco MV, Zuñiga JMA, de Valpine P, Fine PV (2018) Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat Ecol Evol 2:983–990

    Article  PubMed  Google Scholar 

  • Saltonstall K (2002). Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. P Natl Acad Sci 99:2445-2449

  • Sedio BE (2017) Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification. New Phytol 214:952–958

    Article  CAS  PubMed  Google Scholar 

  • Sedio BE, Devaney JL, Pullen J, Parker GG, Wright SJ, Parker JD (2020) Chemical novelty facilitates herbivore resistance and biological invasions in some introduced plant species. Ecol Evol 10:8770–8792

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedio BE, Spasojevic MJ, Myers JA, Wright SJ, Person MD, Chandrasekaran H, Dwenger JH, Prechi ML, Lopez CA, Allen DN, Anderson-Teixeira KJ (2021) Chemical similarity of co-occurring trees decreases with precipitation and temperature in North American forests. Front Ecol Evol 9:679638

  • Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M et al (2017) No saturation in the accumulation of alien species worldwide. Nat Comm 8:1–9

    Article  Google Scholar 

  • Seigler DS (1983). Role of lipids in plant resistance to insects. In: PA Hedin, ed. Plant Resistance to Insects. ACS Symposium Series, Vol. 208. Washington, USA: American Chemical Society, 303–327

  • Skubel SA, Su X, Poulev A, Foxcroft LC, Dushenkov V, Raskin I (2020) Metabolomic differences between invasive alien plants from native and invaded habitats. Sci Rep 10:9749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suda J, Meyerson LA, Leitch IJ, Pyšek P (2015) The hidden side of plant invasions: the role of genome size. New Phytol 205:994–1007

    Article  PubMed  Google Scholar 

  • Tewksbury L, Casagrande R, Blossey B, Hafliger P, Schwarzlander M (2002) Potential for biological control of Phragmites australis in North America. Biol Control 23:191–212

    Article  Google Scholar 

  • Uddin MN, Caridi D, Robinson RW (2012) Phytotoxic evaluation of Phragmites australis: an investigation of aqueous extracts of different organs. Mar Freshwater Res 63(9):777–787

    Article  CAS  Google Scholar 

  • van der Putten W (1997) Die-back of Phragmites australis in European wetlands: An overview of the European research programme on reed dieback and progression (1993–1994). Aquat Bot 59:263–275

    Article  Google Scholar 

  • van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM, Fischer M (2010) Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol Lett 13:947–958

    Article  PubMed  Google Scholar 

  • Wahman R, Sauvêtre A, Schröder P, Moser S, Letzel T (2020) Untargeted metabolomics studies on drug-incubated Phragmites australis profiles. Metabolites 11:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker TW, Alexander JM, Allard PM, Baines O, Baldy V, Bardgett RD, Capdevila P, Coley PD, David B, Defossez E et al (2022) Functional Traits 2.0: The power of the metabolome for ecology. J Ecol 110:4–20

    Article  CAS  Google Scholar 

  • Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34:828–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetzel WC, Whitehead SR (2020) The many dimensions of phytochemical diversity: linking theory to practice. Ecol Lett 23:16–32

    Article  PubMed  Google Scholar 

  • Whitehead SR, Bass E, Corrigan A, Kessler A, Poveda K (2021) Interaction diversity explains the maintenance of phytochemical diversity. Ecol Lett 24:1205–1214

    Article  PubMed  Google Scholar 

  • Williams JR (1954) The biological control of weeds. In: Report of the Sixth Commonwealth Entomological Congress. London, UK, 95–98

  • Zhang X, Dong J, Raftery D (2020) Five Easy Metrics of Data Quality for LC–MS-Based Global Metabolomics. Anal Chem 92:12925–12933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Todd Baker, Vaughan McDonald, Trebor Victoriano, and other Louisiana Department of Wildlife and Fisheries personnel for technical support. Assistance with field and lab work was provided by Matthew Berry and Joseph Johnston. We thank Claudia Solís-Lemus for advice on Random Forests.

Funding

This project was funded by U.S. Department of Agriculture (award number LAB94095 to Rodrigo Diaz, James T. Cronin and Michael J. Stout).

Author information

Authors and Affiliations

Authors

Contributions

Laura A. Meyerson and James T. Cronin conceived of the idea and conducted the experiment. Ana L. Salgado performed the data analyses and constructed all figures and tables. Brian E. Sedio identified and classified the features. Jan Čuda and Petr Pyšek provided the European samples. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Ana L. Salgado.

Ethics declarations

Competing interest

All authors declare having no conflict of interest in this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 301 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, A.L., Glassmire, A.E., Sedio, B.E. et al. Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass. J Chem Ecol 49, 437–450 (2023). https://doi.org/10.1007/s10886-023-01425-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-023-01425-2

Keywords

Navigation