Skip to main content
Log in

New Schiff base ligand N-(2-hydroxy-1-naphthylidene)-2-methyl aniline and its nano-sized copper(II) complex: synthesis, characterization, crystal structure and application as an electrochemical sensor of 2-phenylphenol in the presence of 4-chlorophenol

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new bidentate Schiff base ligand [HL = N-(2-hydroxy-1-naphthylidene)-2-methyl aniline] and its mononuclear Cu(II) complex with formula [CuL2] were prepared and characterized by Fourier-transform infrared (FT-IR), Nuclear Magnetic Resonance [1H and 13C{1H} NMR], Ultraviolet–visible (UV–Vis) spectroscopic methods, and elemental analysis. The Schiff base ligand [HL] and Cu(II) complex [CuL2] crystal structures were determined using the single crystal X-ray diffraction method. The data of crystal structure indicated a bidentate method of coordination for the Schiff base by NO donor sets in a regular square-planar fashion. The nano-sized [CuL2] was synthesized by the sonochemical method and was detected by X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopes (FE-SEM), and FT-IR spectroscopy. The average particle size in nano-sized [CuL2] was approximately 55 nm. The nano-complex [CuL2] was used in a modified screen-printed electrode (modified SPE) as an electrochemical sensor for the detection of 2-phenylphenol. The oxidation reaction of 2-phenylphenol at the modified electrode indicated a linear range of 0.01–600.0 µM and the recognition limit was 8.0 nM. The proposed electrode shows two well-separated oxidation signals for 2-phenylphenol and 4-chlorophenol, which makes it suitable for the simultaneous determination of these analytes. The fabricated sensor was successfully applied for the designation of 2-phenylphenol in lemon rind, orange rind, and water samples with satisfactory recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A.A. Dehghani-Firouzabadi, F. Motevaseliyan, Synthesis and characterization of four new unsymmetrical potentially pentadentate Schiff base ligands and related Zn(II) and Cd(II) complexes. Eur. J. Chem. 5, 635–638 (2014)

    Google Scholar 

  2. E. Yousif, A. Majeed, Kh. Al-Sammarrae, N. Salih, J. Salimon, B. Abdullah, Metal complexes of Schiff base: preparation, characterization and antibacterial activity. Arab. J. Chem. 10, 639–644 (2017)

    Google Scholar 

  3. A. Sahraei, H. Kargar, M. Hakimi, M.N. Tahir, Synthesis, characterization, crystal structures, and biological activities of eight-coordinate zirconium (IV) Schiff base complexes. Transit. Met. Chem. 42, 483–489 (2017)

    CAS  Google Scholar 

  4. B.K. Singh, H.K. Rajour, A. Prakash, Synthesis, characterization, and biological activity of transition metal complexes with Schiff bases derived from 2-nitrobenzaldehyde with glycine and methionine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc 94, 143–151 (2012)

    CAS  Google Scholar 

  5. X. Zhong, J. Yi, J. Sun, H.L. Wei, W.S. Liu, K.B. Yu, Synthesis and crystal structure of some transition metal complexes with a novel bis-Schiff base ligand and their antitumor activities. Eur. J. Med. Chem. 41, 1090–1092 (2006)

    CAS  Google Scholar 

  6. T. Kondori, N. Akbarzadeh-T, M. Fazli, B. Mir, M. Dušek, V. Eigner, A novel schiff base ligand and its copper complex: synthesis, characterization, X-ray crystal structure and biological evaluation. J. Mol. Struct. 1226, 129395 (2021)

    CAS  Google Scholar 

  7. S. Madani, K. Mokhnache, A. Rouane, N. Charef, Synthesis, characterization and in vitro evaluation of antibacterial and antifungal activities of new Schiff base and its metal complexes. Mater. Biomater. Sci. 3, 001–009 (2020)

    Google Scholar 

  8. E. Ravi Krishna, P. Muralidhar Reddy, M. Sarangapani, G. Hanmanthu, B. Geeta, K. Shoba Rani, V. Ravinder, Synthesis of N4 donor macrocyclic Schiff base ligands and their Ru (II), Pd (II), Pt (II) metal complexes for biological studies and catalytic oxidation of didanosine in pharmaceuticals. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 97, 189–196 (2012)

    CAS  Google Scholar 

  9. N.P. Ebosie, M.O. Ogwuegbu, G.O. Onyedika, F.C. Onwumere, Biological and analytical applications of Schiff base metal complexes derived from salicylidene-4-aminoantipyrine and its derivatives: a review. J. Iran. Chem. Soc. (2021). https://doi.org/10.1007/s13738-021-02265-1

    Article  Google Scholar 

  10. M. Ghosh, M. Layek, M. Fleck, R. Saha, D. Bandyopadhyay, Synthesis, crystal structure, and antibacterial activities of mixed ligand copper(II) and cobalt(II) complexes of a NNS Schiff base. Polyhedron 85, 312–319 (2015)

    CAS  Google Scholar 

  11. T.H. Sanatkar, A. Khorshidi, E. Sohouli, J. Janczak, Synthesis, crystal structure, and characterization of two Cu(II) and Ni(II) complexes of a tetradentate N2O2 Schiff base ligand and their application in fabrication of a hydrazine electrochemical sensor. Inorganica Chim. Acta. 506, 119537 (2020)

    Google Scholar 

  12. S. Kumari, D. Yadav, S.K. Sharma, Cu(II) Schiff base complex grafted guar gum: catalyst for benzophenone derivatives synthesis. Appl. Catal. A-Gen. 601, 117529 (2020)

    Google Scholar 

  13. A.A. Soliman, G.G. Mohamed, Study of the ternary complexes of copper with salicylidene-2-aminothiophenol and some amino acids in the solid-state. Thermochim. Acta. 421, 151–159 (2004)

    CAS  Google Scholar 

  14. N. Zare, A. Zabardasti, A. Mohammadi, F. Azarbani, Synthesis of spherical Fe2O3 nanoparticles from the thermal decomposition of iron (III) nano-structure complex: DFT studies and evaluation of the biological activity. Bioorg. Chem. 80, 334–346 (2018)

    CAS  Google Scholar 

  15. A. Khan, T. Al-Bahri, A. Al-Haddad, Adsorption of phenol based organic pollutants on activated carbon from multi-component dilute aqueous solutions. Water Res. 31, 2102–2112 (1997)

    CAS  Google Scholar 

  16. N. Hosoya, K. Motomura, E. Tagawa, M. Nagano, C. Ogiwara, H. Hosoya, Effects of the fungicide ortho-phenylphenol (OPP) on the early development of sea urchin eggs. Mar. Environ. Res. 143, 24–29 (2019)

    CAS  Google Scholar 

  17. F.C. Macintosh, The toxicity of diphenyl and o-phenyl-phenol. Analyst. 70, 334–335 (1945)

    CAS  Google Scholar 

  18. H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci. 554, 603–610 (2019)

    CAS  Google Scholar 

  19. W. Shen, Y. Mu, B. Wang, Z. Ai, L. Zhang, Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles. Appl. Surf. Sci. 393, 316–324 (2017)

    CAS  Google Scholar 

  20. M. Kazemipour, M. Ansari, A. Mohammadi, H. Beitollahi, R. Ahmadi, Use of adsorptive square-wave anodic stripping voltammetry at carbon paste electrode for the determination of amlodipine besylate in pharmaceutical preparations. J. Anal. Chem. 64, 65–70 (2009)

    CAS  Google Scholar 

  21. R. Karthik, R. Sasikumar, S.M. Chen, J.V. Kumar, A. Elangovan, V. Muthuraj, M.S. Elshikh, A highly sensitive and selective electrochemical determination of non-steroidal prostate anti-cancer drug nilutamide based on f-MWCNT in tablet and human blood serum sample. J. Colloid Interface Sci. 487, 289–296 (2017)

    CAS  Google Scholar 

  22. H. Mahmoudi Moghaddam, H. Beitollahi, S. Tajik, M. Malakootian, H. Karimi Maleh, Simultaneous determination of hydroxylamine, and phenol using a nanostructure-based electrochemical sensor. Environ. Monit. Assess. 186, 7431–7441 (2014)

    Google Scholar 

  23. T.W. Chen, A.S. Vasantha, S.M. Chen, D.A. Al Farraj, M.S. Elshikh, R.M. Alkufeidy, M.M. Al Khulaifi, Sonochemical synthesis and fabrication of honeycomb like zirconium dioxide with chitosan modified electrode for sensitive electrochemical determination of anti-tuberculosis (TB) drug. Ultrasonics Sonochem. 59, 104718 (2019)

    CAS  Google Scholar 

  24. S. Tajik, H. Beitollahi, A sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode. Anal. Bioanal. Chem. Res. 6, 171–182 (2019)

    CAS  Google Scholar 

  25. Y. Wu, Y. Wu, X. Lv, W. Lei, Y. Ding, C. Chen, Q. Hao, A sensitive sensing platform for acetaminophen based on palladium and multi-walled carbon nanotube composites and electrochemical detection mechanism. Mater. Chem. Phys. 239, 121977 (2020)

    CAS  Google Scholar 

  26. H. Beitollahi, F. Movahedifar, S. Tajik, S. Jahani, A review on the effects of introducing CNTs in the modification process of electrochemical sensors. Electroanalysis 31, 1195–1200 (2019)

    CAS  Google Scholar 

  27. C. Raril, J.G. Manjunatha, A simple approach for the electrochemical determination of vanillin at ionic surfactant modified graphene paste electrode. Microchem. J. 154, 104575 (2020)

    CAS  Google Scholar 

  28. H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Highly sensitive electrochemical sensor based on La3+-doped Co3O4 nanocubes for determination of sudan I content in food samples. Food Chem. 286, 191–196 (2019)

    CAS  Google Scholar 

  29. T.W. Chen, U. Rajaji, S.M. Chen, S. Chinnapaiyan, R.J. Ramalingam, Facile synthesis of mesoporous WS2 nanorods decorated N-doped RGO network modified electrode as portable electrochemical sensing platform for sensitive detection of toxic antibiotic in biological and pharmaceutical samples. Ultrasonics Sonochem. 56, 430–436 (2019)

    CAS  Google Scholar 

  30. M.A. Khalilzadeh, S. Tajik, H. Beitollahi, R.A. Venditti, Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor. Ind. Eng. Chem. Res. 59, 4219–4228 (2020)

    CAS  Google Scholar 

  31. A.S. Castro, M.M.T. de Menezes, G.M. Alves, M.F. de Oliveira, Voltammetric analysis of cocaine hydrochloride at carbon paste electrode chemically modified with N, N’-ethylene-bis-(salicylideneiminato) manganese(II) Schiff base complex. Microchem. J. 153, 104399 (2020)

    CAS  Google Scholar 

  32. H. Beitollahi, M.A. Khalilzadeh, S. Tajik, M. Safaei, K. Zhang, H.W. Jang, M. Shokouhimehr, Recent advances in applications of voltammetric sensors modified with ferrocene and its derivatives. ACS Omega 5, 2049–2059 (2020)

    CAS  Google Scholar 

  33. T.W. Chen, U. Rajaji, S.M. Chen, A. Muthumariyappan, M.M. Al Mogren, R.J. Ramalingam, M. Hochlaf, Facile synthesis of copper(II) oxide nanospheres covered on functionalized multiwalled carbon nanotubes modified electrode as a rapid electrochemical sensing platform for super-sensitive detection of antibiotic. Ultrasonics Sonochem. 58, 104596 (2019)

    CAS  Google Scholar 

  34. M.R. Ganjali, H. Salimi, S. Tajik, H. Beitollahi, M. Rezapour, B. Larijani, Application of Fe3O4@ SiO2/MWCNT film on glassy carbon electrode for the sensitive electroanalysis of levodopa. Int. J. Electrochem. Sci. 12, 5243–5253 (2017)

    CAS  Google Scholar 

  35. H. Beitollahi, Z. Dourandish, S. Tajik, M.R. Ganjali, P. Norouzi, F. Faridbod, Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine. J. Rare Earths 36, 750–757 (2018)

    CAS  Google Scholar 

  36. G.G. Gerent, A. Spinelli, Magnetite-platinum nanoparticles-modified glassy carbon electrode as electrochemical detector for nitrophenol isomers. J. Hazard. Mater. 330, 105–115 (2017)

    CAS  Google Scholar 

  37. M.R. Aflatoonian, S. Tajik, B. Mohtat, B. Aflatoonian, I. Sheikh Shoaie, H. Beitollahi, K. Zhang, H.W. Jang, M. Shokouhimehr, Direct electrochemical detection of clozapine by RuO 2 nanoparticles-modified screen-printed electrode. RSC Adv. 10, 13021–13028 (2020)

    CAS  Google Scholar 

  38. G. Congur, A. Erdem, PAMAM dendrimer modified screen printed electrodes for impedimetric detection of miRNA-34a. Microchem. J. 148, 748–758 (2019)

    CAS  Google Scholar 

  39. H. Xie, X. Li, G. Luo, Y. Niu, R. Zou, C. Yin, G. Li, Nano-diamond modified electrode for the investigation on direct electrochemistry and electrocatalytic behavior of myoglobin. Diam. Relat. Mater. 97, 107453–107461 (2019)

    CAS  Google Scholar 

  40. S. Kannan, J.I. Son, J.E. Yang, Y.B. Shim, Electrochemical polymerization of ruthenium(II) complex and application to acetaminophen analysis. Bull. Korea. Chem. Soc. 32, 1341–1345 (2011)

    CAS  Google Scholar 

  41. B. Dinesh, R. Saraswathi, Electrochemical synthesis of nanostructured copper-curcumin complex and its electrocatalytic application towards reduction of 4-nitrophenol. Sensor. Actuat. B-Chem. 253, 502–512 (2017)

    CAS  Google Scholar 

  42. H. Beitollahi, S. Nekooei, Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine. Electroanalysis 28, 645–653 (2016)

    CAS  Google Scholar 

  43. M. Shahbakhsh, M. Noroozifar, Copper polydopamine complex/multiwalled carbon nanotubes as novel modifier for simultaneous electrochemical determination of ascorbic acid, dopamine, acetaminophen, nitrite and xanthine. J. Solid. State. Electrochem. 22, 3049–3057 (2018)

    CAS  Google Scholar 

  44. F. Arduini, C. Zanardi, S. Cinti, F. Terzi, D. Moscone, G. Palleschi, R. Seeber, Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite. Sens. Actuators B Chem. 212, 536–543 (2015)

    CAS  Google Scholar 

  45. K.F. Chan, H.N. Lim, N. Shams, S. Jayabal, A. Pandikumar, N.M. Huang, Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen. Mater. Sci. Eng. C 58, 666–674 (2016)

    CAS  Google Scholar 

  46. C.W. Foster, J.P. Metters, D.K. Kampouris, C.E. Banks, Ultraflexible screen printed graphitic electroanalytical sensing platforms. Electroanalysis 26, 262–274 (2014)

    CAS  Google Scholar 

  47. P. Bollella, G. Fusco, D. Stevar, L. Gorton, R. Ludwig, S. Ma, H. Boer, A. Koivula, C. Tortolini, G. Favero, R. Antiochia, A glucose/oxygen enzymatic fuel cell based on gold nanoparticles modified graphene screen-printed electrode. Proof-of-concept in human saliva. Sens. Actuators B Chem. 256, 921–930 (2018)

    CAS  Google Scholar 

  48. A. Wong, A. MartinSantos, E. LuizFava, O. Fatibello-Filho, M.D.P. Taboada Sotomayor, Voltammetric determination of 17β-estradiol in different matrices using a screen-printed sensor modified with CuPc, Printex 6L carbon and Nafion film. Microchem. J. 147, 365–373 (2019)

    CAS  Google Scholar 

  49. E. Tozzo, S. Romera, M.P. dos Santos, M. Muraro, H.D.A. Regina, L.M. Liao, E.R. Dockal, Synthesis, spectral studies and X-ray crystal structure of N, N′-(±)-trans-1, 2-cyclohexylenebis (3-ethoxysalicylideneamine) H2 (t-3-EtOsalchxn). J. Mol. Struct. 876, 110–120 (2008)

    CAS  Google Scholar 

  50. O. Fatibello-Filho, E.R. Dockal, L.H. Marcolino-Junior, M.F. Teixeira, Electrochemical modified electrodes based on metal-salen complexes. Anal. Lett. 40, 1825–1852 (2007)

    CAS  Google Scholar 

  51. A. Panda, S. Panda, K. Srivastava, H.B. Singh, Chemistry of selenium/tellurium-containing Schiff base macrocycles. Inorg. Chim. Acta. 372, 17–31 (2011)

    CAS  Google Scholar 

  52. W. Al Zoubi, N. Al Mohanna, Membrane sensors based on Schiff bases as chelating ionophores—a review. Spectrochimica Acta Part A Mol. Biomol. 132, 854–870 (2014)

    CAS  Google Scholar 

  53. A. Ourari, B. Ketfi, S.I.R. Malha, A. Amine, Electrocatalytic reduction of nitrite and bromate and their highly sensitive determination on carbon paste electrode modified with new copper Schiff base complex. J. Electroanal. Chem. 797, 31–36 (2017)

    CAS  Google Scholar 

  54. Rigaku Oxford Diffraction, CrysAlisPro Software System (Rigaku Corporation, Oxford, 2020)

    Google Scholar 

  55. L. Palatinus, G. Chapuis, SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40, 786–790 (2007)

    CAS  Google Scholar 

  56. V. Petricek, M. Dusek, L. Palatinus, Crystallographic computing system JANA2006: general features. Z. Kristallog. Cryst. Mater. 229, 345–352 (2014)

    CAS  Google Scholar 

  57. J. Rohlicek, M. Husak, a new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Cryst. 40, 600–601 (2005)

    Google Scholar 

  58. H. Raouf, S.A. Beyramabadi, S. AllamehA, Morsali, Synthesis, experimental and theoretical characterizations of a 1, 2, 4-triazole Schiff base and its nickel(II) complex. J. Mol. Struct. 1179, 779–786 (2019)

    CAS  Google Scholar 

  59. I. Yilmaz, H. Temel, H. Alp, Synthesis, electrochemistry and in situ spectroelectrochemistry of a new Co (III) thio Schiff-base complex with N, N′-bis (2-aminothiophenol)-1, 4-bis (carboxylidenephenoxy) butane. Polyhedron 27, 125–132 (2008)

    CAS  Google Scholar 

  60. L.H. Abdel-Rahman, A.M. Abu-Dief, R.M. El-Khatib, S.M. Abdel-Fatah, Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg. Chem. 69, 140–152 (2016)

    CAS  Google Scholar 

  61. H. Kargar, V. Torabi, A. Akbari, R. Behjatmanesh-Ardakani, M.N. Tahir, Synthesis, characterization, crystal structure and DFT studies of a palladium(II) complex with an asymmetric Schiff base ligand. J. Mol. Struct. 1179, 732–738 (2019)

    CAS  Google Scholar 

  62. A.A.A. Aziz, F.M. Elantabli, H. Moustafa, S.M. El-Medani, Spectroscopic, DNA binding ability, biological activity, DFT calculations and non linear optical properties (NLO) of novel Co(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes with ONS Schiff base. J. Mol. Struct. 1141, 563–576 (2017)

    Google Scholar 

  63. A.A. Soliman, G.G. Mohamed, Study of the ternary complexes of copper with salicylidene-2-aminothiophenol and some amino acids in the solid state. Thermochim. Acta 421, 151–159 (2004)

    CAS  Google Scholar 

  64. L.H. Abdel-Rahman, A.M. Abu-Dief, R.M. El-Khatib, S.M. Abdel-Fatah, Sonochemical synthesis, DNA binding, antimicrobial evaluation and in vitro anticancer activity of three new nano-sized Cu(II), Co(II) and Ni(II) chelates based on tri-dentate NOO imine ligands as precursors for metal oxides. J. Photochem. Photobiol B Biol. 162, 298–308 (2016)

    CAS  Google Scholar 

  65. R.H. Taha, Z.A. El-Shafiey, A.A. Salman, E.M. El-Fakharany, M.M. Mansour, Synthesis and characterization of newly synthesized Schiff base ligand and its metal complexes as potent anticancer. J. Mol. Struct. 1181, 536–545 (2019)

    CAS  Google Scholar 

  66. Z. Abbasi, M. Salehi, A. Khaleghian, M. Kubicki, In vitro cytotoxic activity of a novel Schiff base ligand derived from 2-hydroxy-1-naphthaldehyde and its mononuclear metal complexes. J. Mol. Struct. 1173, 213–220 (2018)

    CAS  Google Scholar 

  67. M. Pervaiz, I. Ahmad, M. Yousaf, S. Kirn, A. Munawar, Z. Saeed, A. Rashid, Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochimica Acta Part A Mol. Biomol Spectr. 206, 642–649 (2019)

    CAS  Google Scholar 

  68. S. Alyar, C. Sen, H. Alyar, S. Adem, A. Kalkanci, U.O. Ozdemir, Synthesis, characterization, antimicrobial activity, carbonic anhydrase enzyme inhibitor effects, and computational studies on new Schiff bases of Sulfa drugs and their Pd(II), Cu(II) complexes. J. Mol. Struct. 1171, 214–222 (2018)

    CAS  Google Scholar 

  69. M. Biabani, H. Saravani, V. Eigner, M. Dusek, A novel coordination polymer of Cd(II) based on 2-mercaptopyrimidine: sonochemical synthesis, characterization, and antibacterial properties. J. Mol. Struct. 1166, 470–478 (2018)

    CAS  Google Scholar 

  70. H. Sadeghzadeh, A. Morsali, Sonochemical synthesis and characterization of nano-belt lead(II) coordination polymer: new precursor to produce pure phase nano-sized lead(II) oxide. Ultrasonics Sonochem. 18, 80–84 (2011)

    CAS  Google Scholar 

  71. M. Saif, H.F. El-Shafiy, M.M. Mashaly, M.F. Eid, A.I. Nabeel, R. Fouad, Synthesis, characterization, and antioxidant/cytotoxic activity of new chromone Schiff base nano-complexes of Zn(II), Cu(II), Ni(II) and Co(II). J. Mol. Struct. 1118, 75–82 (2016)

    CAS  Google Scholar 

  72. D.D. Bui, J. Hu, P. Stroeven, Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete. Cem Concr Compos. 27, 357–366 (2005)

    CAS  Google Scholar 

  73. H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, A. Arotiba, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci. 554, 603–610 (2019)

    CAS  Google Scholar 

  74. D. Tishkevich, S. Grabchikov, T. Zubar, D. Vasin, S. Trukhanov, A. Vorobjova, D. Yakimchuk, A. Kozlovskiy, M. Zdorovets, S. Giniyatova, D. Shimanovich, Early-stage growth mechanism and synthesis conditions-dependent morphology of nanocrystalline Bi films electrodeposited from perchlorate electrolyte. Nanomater. 10, 1245 (2020)

    CAS  Google Scholar 

  75. A.J. Bard, L.R. Faulkner, Fundamentals and applications, 2nd edn, p. 864

Download references

Acknowledgements

The authors thank the University of Sistan and Baluchestan and the Graduate University of Advanced Technology, Kerman, Iran for the support of this research work. The crystallographic part was supported by the project 18-10504S of the Czech Science Foundation using the CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niloufar Akbarzadeh-T or Hadi Beitollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazli, M., Akbarzadeh-T, N., Beitollahi, H. et al. New Schiff base ligand N-(2-hydroxy-1-naphthylidene)-2-methyl aniline and its nano-sized copper(II) complex: synthesis, characterization, crystal structure and application as an electrochemical sensor of 2-phenylphenol in the presence of 4-chlorophenol. J Mater Sci: Mater Electron 32, 25118–25136 (2021). https://doi.org/10.1007/s10854-021-06967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06967-3

Navigation