Skip to main content
Log in

Structural, dielectric and magnetic studies of (0–3) type multiferroic (1 − x) BaTi0.8Sn0.2O3–(x) La0.5Ca0.5MnO3 (0 ≤ x ≤ 1) composite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic composites with the composition (1 − x) BaTi0.8Sn0.2O3–(x) La0.5Ca0.5MnO3 (x = 0, 0.3, 0.5, 0.7, 0.9 and 1) were prepared by sol–gel techniques. Rietveld refinements of the composites with 0–3 and 3–0 type connectivities exhibit the formation of pure phases and confirm the fraction of the composite samples. It was found that the composites grain size decreases slightly with increasing the La0.5Ca0.5MnO3 content. Magnetic measurements of the composite ceramics exhibit a gradual increase in saturation and remanent magnetization with increasing La0.5Ca0.5MnO3 content. Dielectric data demonstrate that the composite materials show high values of the dielectric constant in comparison with the parent compound BaTi0.8Sn0.2O3 (BTSO). In addition, an attempt is made to measure the magnetoelectric coupling coefficient and to explain the negative permittivity and losses occurring in these materials at a certain frequency and temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.F. Scott, Applications of magnetoelectrics. J. Mater. Chem. 22, 4567 (2012). https://doi.org/10.1039/c2jm16137k

    Article  CAS  Google Scholar 

  2. J. Rani, K.L. Yadav, S. Prakash, Dielectric and magnetic properties of xCoFe2O4–(1–x)[0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3] composites. Mater. Res. Bull. 60, 367–375 (2014). https://doi.org/10.1016/j.materresbull.2014.09.013

    Article  CAS  Google Scholar 

  3. J. Ma, J. Hu, Z. Li, C.-W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011). https://doi.org/10.1002/adma.201003636

    Article  CAS  Google Scholar 

  4. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004)

    Article  CAS  Google Scholar 

  5. N.A. Spaldin, Materials science: the renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005). https://doi.org/10.1126/science.1113357

    Article  CAS  Google Scholar 

  6. C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010). https://doi.org/10.1002/adma.200904326

    Article  CAS  Google Scholar 

  7. Z. Chu, H. Shi, W. Shi, G. Liu, J. Wu, J. Yang, S. Dong, Enhanced resonance magnetoelectric coupling in (1–1) connectivity composites. Adv. Mater. 29, 1606022 (2017). https://doi.org/10.1002/adma.201606022

    Article  CAS  Google Scholar 

  8. S.B. Li, C.B. Wang, Q. Shen, L.M. Zhang, Multiferroic properties of (1–x)BCZT–xLCMO laminated composites. Ceram. Int. 44, 231–235 (2018). https://doi.org/10.1016/j.ceramint.2017.09.163

    Article  CAS  Google Scholar 

  9. S. Ben Moumen, M. Jagodic, M. El Marssi, Y. Kopelevich, I.A. Luk’yanchuk, Y. Gagou, S. Belkhadir, D. Mezzane, M. Amjoud, B. Rozic, L. Hajji, Z. Kutnjak, Z. Jaglicic, Structural, dielectric, and magnetic properties of multiferroic (1–x) La0.5Ca0.5MnO3–(x) BaTi0.8Sn0.2O3 laminated composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 66, 1935–1941 (2019). https://doi.org/10.1109/TUFFC.2019.2935459

    Article  CAS  Google Scholar 

  10. M. Stingaciu, P.G. Reuvekamp, C.-W. Tai, R.K. Kremer, M. Johnsson, The magnetodielectric effect in BaTiO3–SrFe12O19 nanocomposites. J Mater Chem C. 2, 325–330 (2014). https://doi.org/10.1039/C3TC31737D

    Article  CAS  Google Scholar 

  11. N.S. Negi, R. Kumar, H. Sharma, J. Shah, R.K. Kotnala, Structural, multiferroic, dielectric and magnetoelectric properties of (1–x)Ba0.85Ca0.15Ti0.90Zr0.10O3–(x)CoFe2O4 lead-free composites. J. Magn. Magn. Mater. 456, 292–299 (2018). https://doi.org/10.1016/j.jmmm.2017.12.095

    Article  CAS  Google Scholar 

  12. P. Pahuja, C. Prakash, R.P. Tandon, Comparative study of magnetoelectric composite system Ba0.95Sr0.05TiO3–Ni0.8Co0.2Fe2O4 with ferrite prepared by different methods. Ceram. Int. 40, 5731–5743 (2014). https://doi.org/10.1016/j.ceramint.2013.11.012

    Article  CAS  Google Scholar 

  13. W. Tang, W. Lu, X. Luo, B. Wang, X. Zhu, W. Song, Z. Yang, Y. Sun, Particle size effects on La0.7Ca0.3MnO3: size-induced changes of magnetic phase transition order and magnetocaloric study. J. Magn. Magn. Mater. 322, 2360–2368 (2010). https://doi.org/10.1016/j.jmmm.2010.02.038

    Article  CAS  Google Scholar 

  14. S. Ben Moumen, Y. Gagou, M. Chettab, D. Mezzane, M. Amjoud, S. Fourcade, L. Hajji, Z. Kutnjak, M. El Marssi, Y. El Amraoui, Y. Kopelevich, I.A. Luk’yanchuk, Synthesis of La0.5Ca0.5−x□xMnO3 nanocrystalline manganites by sucrose assisted auto combustion route and study of their structural, magnetic and magnetocaloric properties. J. Mater. Sci. Mater. Electron. 30, 20459–20470 (2019). https://doi.org/10.1007/s10854-019-02392-9

    Article  CAS  Google Scholar 

  15. A. Vijayalakshmi, N.S. Gajbhiye, Magnetic properties of single-domain SrFe12O19 particles synthesized by citrate precursor technique. J. Appl. Phys. 83, 400–406 (1998). https://doi.org/10.1063/1.366654

    Article  CAS  Google Scholar 

  16. B. Xiao, N. Ma, P. Du, Percolative NZFO/BTO ceramic composite with magnetism threshold. J. Mater. Chem. C. 1, 6325–6334 (2013). https://doi.org/10.1039/C3TC30807C

    Article  CAS  Google Scholar 

  17. S. Belkhadir, S. Ben Moumen, B. Asbani, M. Amjoud, D. Mezzane, I.A. Luk’yanchuk, E. Choukri, L. Hajji, Y. Gagou, M. El Marssi, Impedance spectroscopy analysis of the diffuse phase transition in lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramic elaborated by sol-gel method. Superlatt. Microstruct. 127, 71–79 (2019). https://doi.org/10.1016/j.spmi.2018.03.009

    Article  CAS  Google Scholar 

  18. J. Yang, W.H. Song, Y.Q. Ma, R.L. Zhang, Y.P. Sun, Determination of oxygen stoichiometry in the mixed-valent manganites. J. Magn. Magn. Mater. 285, 417–421 (2005). https://doi.org/10.1016/j.jmmm.2004.08.012

    Article  CAS  Google Scholar 

  19. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 192, 55–69 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  20. P. Zheng, J.L. Zhang, Y.Q. Tan, C.L. Wang, Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics. Acta Mater. 60, 5022–5030 (2012). https://doi.org/10.1016/j.actamat.2012.06.015

    Article  CAS  Google Scholar 

  21. T.M. Kamel, G. de With, Grain size effect on the poling of soft Pb(Zr, Ti)O3 ferroelectric ceramics. J. Eur. Ceram. Soc. 28, 851–861 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.08.010

    Article  CAS  Google Scholar 

  22. C.A. Randall, N. Kim, J.-P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (2005). https://doi.org/10.1111/j.1151-2916.1998.tb02389.x

    Article  Google Scholar 

  23. A. Jain, A.K. Panwar, A.K. Jha, Y. Sharma, Improvement in dielectric, ferroelectric and ferromagnetic characteristics of Ba0.9Sr0.1Zr0.1Ti0.9O3–NiFe2O4 composites. Ceram. Int. 43, 10253–10262 (2017). https://doi.org/10.1016/j.ceramint.2017.05.053

    Article  CAS  Google Scholar 

  24. H. Yang, H. Wang, L. He, L. Shui, X. Yao, Polarization relaxation mechanism of Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with giant dielectric constant and high permeability. J. Appl. Phys. 108, 074105 (2010). https://doi.org/10.1063/1.3490782

    Article  CAS  Google Scholar 

  25. R. Sharma, P. Pahuja, R.P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40, 9027–9036 (2014). https://doi.org/10.1016/j.ceramint.2014.01.115

    Article  CAS  Google Scholar 

  26. X.Y. Mao, W. Wang, X.B. Chen, Electrical and magnetic properties of Bi5FeTi3O15 compound prepared by inserting BiFeO3 into Bi4Ti3O12. Solid State Commun. 147, 186–189 (2008). https://doi.org/10.1016/j.ssc.2008.05.025

    Article  CAS  Google Scholar 

  27. J.A. Bartkowska, D. Bochenek, P. Niemiec, Multiferroic Aurivillius-type Bi6Fe2−xMnxTi3O18 (0 ≤ x ≤ 1.5) ceramics with negative dielectric constant. Appl. Phys. A. 124, 823 (2018). https://doi.org/10.1007/s00339-018-2247-4

    Article  CAS  Google Scholar 

  28. J.A. Bartkowska, D. Bochenek, Microstructure and dielectric properties of BF–PFN ceramics with negative dielectric loss. J. Mater. Sci. Mater. Electron. 29, 17262–17268 (2018). https://doi.org/10.1007/s10854-018-9820-7

    Article  CAS  Google Scholar 

  29. X.-K. Wei, Y. Su, Y. Sui, Z. Zhou, Y. Yao, C. Jin, R. Yu, Ferromagnetic antiphase domain boundary in Mn-doped hexagonal BaTiO 3 multiferroics. Appl. Phys. Lett. 102, 242910 (2013). https://doi.org/10.1063/1.4811699

    Article  CAS  Google Scholar 

  30. I. Luk’yanchuk, A. Sené, V.M. Vinokur, Electrodynamics of ferroelectric films with negative capacitance, Phys. Rev. B. 98 (2018) 024107. https://doi.org/10.1103/PhysRevB.98.024107.

  31. P. Zubko, J.C. Wojdeł, M. Hadjimichael, S. Fernandez-Pena, A. Sené, I. Luk’yanchuk, J.-M. Triscone, J. Íñiguez, Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016). https://doi.org/10.1038/nature17659

    Article  CAS  Google Scholar 

  32. E. Bose, S. Taran, S. Karmakar, B.K. Chaudhuri, S. Pal, C.P. Sun, H.D. Yang, Effect of grain boundary layer strain on the magnetic and transport properties of (100–x) La0.7Ca0.3MnO3/(x) BaTiO3 composites showing enhanced magnetoresistance. J. Magn. Magn. Mater. 314, 30–36 (2007). https://doi.org/10.1016/j.jmmm.2007.02.123

    Article  CAS  Google Scholar 

  33. S.L. Young, H.Z. Chen, C.C. Lin, J.B. Shi, L. Horng, Y.T. Shih, Magnetotransport properties of (La0.7Pb0.3MnO3)1−xAgx composites. J. Magn. Magn. Mater. 303, e325–e328 (2006). https://doi.org/10.1016/j.jmmm.2006.01.099

    Article  CAS  Google Scholar 

  34. M.M. Vopson, Y.K. Fetisov, G. Caruntu, G. Srinivasan, Measurement techniques of the magneto-electric coupling in multiferroics. Materials. 10, 963 (2017). https://doi.org/10.3390/ma10080963

    Article  CAS  Google Scholar 

  35. V.V. Laguta, A.N. Morozovska, E.A. Eliseev, I.P. Raevski, S.I. Raevskaya, E.I. Sitalo, S.A. Prosandeev, L. Bellaiche, Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3. J. Mater. Sci. 51, 5330–5342 (2016). https://doi.org/10.1007/s10853-016-9836-4

    Article  CAS  Google Scholar 

  36. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. Appl. Phys. 38, R123–R152 (2005). https://doi.org/10.1088/0022-3727/38/8/R01

    Article  CAS  Google Scholar 

  37. C.-W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B. 50, 6082–6088 (1994). https://doi.org/10.1103/PhysRevB.50.6082

    Article  CAS  Google Scholar 

  38. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008). https://doi.org/10.1063/1.2836410

    Article  CAS  Google Scholar 

  39. S.L. Hou, N. Bloembergen, Paramagnetoelectric effects in NiSO4·6H2O. Phys. Rev. 138, A1218–A1226 (1965). https://doi.org/10.1103/PhysRev.138.A1218

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the European H2020-MSCA-RISE-2017-ENGIMA (No. 778072) action, Slovenian research agency program P1-0125 and the CNRST Priority Program PPR 15/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ben Moumen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Moumen, S., Hadouch, Y., Gagou, Y. et al. Structural, dielectric and magnetic studies of (0–3) type multiferroic (1 − x) BaTi0.8Sn0.2O3–(x) La0.5Ca0.5MnO3 (0 ≤ x ≤ 1) composite ceramics. J Mater Sci: Mater Electron 31, 19343–19354 (2020). https://doi.org/10.1007/s10854-020-04468-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04468-3

Navigation