Skip to main content
Log in

Atomic-scale insights into damage produced by swift heavy ions in polyethylene

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We describe the formation of swift heavy ion tracks in polyethylene (PE) by combining the Monte Carlo code TREKIS, which models electronic excitation in nanometric proximity of the ion trajectory, with the molecular dynamics simulating a response of the atomic system to the excitation. The model predicts circular tracks in amorphous PE but elliptical ones in crystalline PE caused by preferential propagation of excitation along polymer chains during the cooling stage. The obtained track sizes and shapes agree well with the high-resolution transmission microscopy of tracks in PE with colorant. The velocity effect in PE is shown: the track parameters differ for ions with the same linear energy losses but different velocities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data and code availability

Data will be made available upon a reasonable request. TREKIS-3 code used in this research is available from https://zenodo.org/doi/10.5281/zenodo.8394462.

References

  1. Lang M, Djurabekova F, Medvedev N, Toulemonde M, Trautmann C (2020) Fundamental phenomena and applications of swift heavy ion irradiations. Compr Nucl Mater Second Ed. https://doi.org/10.1016/B978-0-12-803581-8.11644-3

    Article  Google Scholar 

  2. Komarov FF (2017) Nano- and microstructuring of solids by swift heavy ions. Phys Usp. https://doi.org/10.3367/UFNe.2016.10.038012

    Article  Google Scholar 

  3. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM—the stopping and range of ions in matter. Nucl Instrum Methods Phys Res B 268:1818–1823. https://doi.org/10.1016/j.nimb.2010.02.091

    Article  CAS  Google Scholar 

  4. Ferry M, Ngono-Ravache Y, Aymes-Chodur C, Clochard MC, Coqueret X, Cortella L, Pellizzi E, Rouif S, Esnouf S (2016) Ionizing radiation effects in polymers. Ref Modul Mater Sci Mater Engineering. https://doi.org/10.1016/b978-0-12-803581-8.02095-6

    Article  Google Scholar 

  5. Sviridov DV (2002) Chemical aspects of implantation of high-energy ions into polymeric materials. Usp Khim 71:374–377. https://doi.org/10.1070/rc2002v071n04abeh000710

    Article  Google Scholar 

  6. Blonskaya IV, Kristavchuk OV, Nechaev AN, Orelovich OL, Polezhaeva OA, Apel PY (2021) Observation of latent ion tracks in semicrystalline polymers by scanning electron microscopy. J Appl Polym Sci 138:1–9. https://doi.org/10.1002/app.49869

    Article  CAS  Google Scholar 

  7. Balanzat E, Bouffard S, Le Moel A, Betz N (1994) Physico-chemical modifications induced in polymers by swift heavy ions. Nucl Inst Methods Phys Res B 91:140–145

    Article  CAS  Google Scholar 

  8. Delgado AO, Rizzutto MA, Severin D, Seidl T, Neumann R, Trautmann C (2012) Latent track radius of PTFE irradiated with high energy ion beam. Nucl Instrum Methods Phys Res B. https://doi.org/10.1016/j.nimb.2011.07.037

    Article  Google Scholar 

  9. Wang X (2022) Investigation of the detailed structure of ion tracks in polymer foils, Thesis.

  10. Hnatowicz V (1999) Simple model of radial structure of latent tracks in polymers. Phys Status Solidi B 216:931–941

    Article  CAS  Google Scholar 

  11. Bouffard S, Gervais B, Leroy C (1995) Basic phenomena induced by swift heavy ions in polymers. Nuclear Inst Methods Phys Res B 105:1–4. https://doi.org/10.1016/0168-583X(95)00525-0

    Article  CAS  Google Scholar 

  12. de Vera P, Abril I, Garcia-Molina R (2011) Inelastic scattering of electron and light ion beams in organic polymers. J Appl Phys. https://doi.org/10.1063/1.3581120

    Article  Google Scholar 

  13. Dapor M, Abril I, De Vera P, Garcia-Molina R (2015) Simulation of the secondary electrons energy deposition produced by proton beams in PMMA: influence of the target electronic excitation description. Eur Phys J D. https://doi.org/10.1140/epjd/e2015-60123-7

    Article  Google Scholar 

  14. Garcia-Molina R, Dapor M, de Vera P, Abril I (2017) Energy deposition around swift proton and carbon ion tracks in biomaterials. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/875/12/112006

    Article  Google Scholar 

  15. Kański M, Hrabar S, van Duin ACT, Postawa Z (2022) Development of a charge-implicit ReaxFF for C/H/O systems. J Phys Chem Lett 13:628–633. https://doi.org/10.1021/acs.jpclett.1c03867

    Article  CAS  Google Scholar 

  16. Kański M, Maciazek D, Postawa Z, Ashraf CM, Van Duin ACT, Garrison BJ (2018) Development of a charge-implicit ReaxFF potential for hydrocarbon systems. J Phys Chem Lett 9:359–363. https://doi.org/10.1021/acs.jpclett.7b03155

    Article  CAS  Google Scholar 

  17. O’Connor TC, Andzelm J, Robbins MO (2015) AIREBO-M: a reactive model for hydrocarbons at extreme pressures. J Chem Phys. https://doi.org/10.1063/1.4905549

    Article  Google Scholar 

  18. Papaléo RM, Thomaz R, Gutierres LI, de Menezes VM, Severin D, Trautmann C, Tramontina D, Bringa EM, Grande PL (2015) Confinement effects of ion tracks in ultrathin polymer films. Phys Rev Lett 114:1–5. https://doi.org/10.1103/PhysRevLett.114.118302

    Article  CAS  Google Scholar 

  19. Gutierres LI, Lima NW, Thomaz RS, Papaléo RM, Bringa EM (2017) Simulations of cratering and sputtering from an ion track in crystalline and amorphous Lennard Jones thin films. Comput Mater Sci 129:98–106. https://doi.org/10.1016/j.commatsci.2016.12.001

    Article  CAS  Google Scholar 

  20. Lima NW, Gutierres LI, Gonzalez RI, Müller S, Thomaz RS, Bringa EM, Papaléo RM (2016) Molecular dynamics simulation of polymerlike thin films irradiated by fast ions: a comparison between FENE and Lennard-Jones potentials. Phys Rev B 94:195417. https://doi.org/10.1103/PhysRevB.94.195417

    Article  Google Scholar 

  21. Shen W, Wang X, Zhang G, Kluth P, Yugang W, Liu F (2023) Illustrating the atomic structure and formation mechanism of ion tracks in polyethylene terephthalate with molecular dynamics simulations. Nucl Instrum Methods Phys Res B 535:102–111. https://doi.org/10.1016/j.progpolymsci.2007.07.005

    Article  CAS  Google Scholar 

  22. Gorbunov SA, Babaev PA, Rymzhanov RA, Volkov AE, Voronkov RA (2023) Atomistic model of wet chemical etching of swift heavy ion tracks. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.2c07236

    Article  Google Scholar 

  23. Apostolova T, Artacho E, Cleri F, Cotelo M, Crespillo ML, Da Pieve F, Dimitriou V, Djurabekova F, Duffy DM, García G, García-Lechuga M, Gu B, Jarrin T, Kaselouris E, Kohanoff J, Koundourakis G, Koval N, Lipp V, Martin-Samos L, Medvedev N, Molina-Sánchez A, Muñoz-Santiburcio D, Murphy ST, Nordlund K, Oliva E, Olivares J, Papadogiannis NA, Redondo-Cubero A, Rivera de Mena A, Sand AE, Sangalli D, Siegel J, Solov’yov AV, Solov’yov IA, Teunissen J, Vázquez E, Verkhovtsev AV, Viñals S, Ynsa MD (2021) Tools for investigating electronic excitation: experiment and multi-scale modelling. Universidad Politécnica de Madrid. Instituto de Fusión Nuclear Guillermo Velarde, Madrid

    Book  Google Scholar 

  24. Rymzhanov RA, Gorbunov SA, Medvedev N, Volkov AE (2019) Damage along swift heavy ion trajectory. Nucl Instrum Methods Phys Res B 440:25–35. https://doi.org/10.1016/j.nimb.2018.11.034

    Article  CAS  Google Scholar 

  25. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, In’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD, Shan R, Stevens MJ, Tranchida J, Trott C, Plimpton SJ (2022) LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171. https://doi.org/10.1016/J.CPC.2021.108171

    Article  CAS  Google Scholar 

  26. Medvedev NA, Rymzhanov RA, Volkov AE (2015) Time-resolved electron kinetics in swift heavy ion irradiated solids. J Phys D Appl Phys 48:355303. https://doi.org/10.1088/0022-3727/48/35/355303

    Article  CAS  Google Scholar 

  27. Rymzhanov RA, Medvedev NA, Volkov AE (2016) Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks. Nucl Instrum Methods Phys Res B 388:41–52. https://doi.org/10.1016/j.nimb.2016.11.002

    Article  CAS  Google Scholar 

  28. Rymzhanov R, Medvedev NA, Volkov AE (2017) Damage threshold and structure of swift heavy ion tracks in Al2O3. J Phys D Appl Phys 50:475301. https://doi.org/10.1088/1361-6463/aa8ff5

    Article  CAS  Google Scholar 

  29. Medvedev N, Rymzhanov R, Volkov A (2023) TREKIS-3 [Computer software]. 10.5281/zenodo.8394462.

  30. Van Hove L (1954) Correlations in space and time and born approximation scattering in systems of interacting particles. Phys Rev 95:249–262. https://doi.org/10.1103/PhysRev.95.249

    Article  Google Scholar 

  31. Ritchie RH, Howie A (1977) Electron excitation and the optical potential in electron microscopy. Phil Mag 36:463–481. https://doi.org/10.1080/14786437708244948

    Article  CAS  Google Scholar 

  32. Kittel C, Fong C (1987) Quantum theory of solids. Wiley, New York

    Google Scholar 

  33. Rymzhanov RA, Medvedev NA, Volkov AE (2014) Monte-Carlo modeling of excitation of the electron subsystem of Al2O3 and polyethylene after swift heavy ion impact. Nucl Instrum Methods Phys Res B 326:238–242. https://doi.org/10.1016/j.nimb.2013.10.035

    Article  CAS  Google Scholar 

  34. Jenkins TM, Nelson WR, Rindi A (1988) Monte Carlo transport of electrons and photons. Springer US, Boston. https://doi.org/10.1007/978-1-4613-1059-4

    Book  Google Scholar 

  35. Medvedev N, Volkov AE (2022) Nonthermal acceleration of atoms as a mechanism of fast lattice heating in ion tracks. J Appl Phys 131:225903. https://doi.org/10.1063/5.0095724

    Article  CAS  Google Scholar 

  36. Plimpton S (2018) Fast parallel algorithms for short-range molecular dynamics. Soft Matter 14:2152–2162. https://doi.org/10.1039/c7sm02429k

    Article  CAS  Google Scholar 

  37. O’Connor TC, Elder RM, Sliozberg YR, Sirk TW, Andzelm JW, Robbins MO (2018) Molecular origins of anisotropic shock propagation in crystalline and amorphous polyethylene. Phys Rev Mater 2:1–16. https://doi.org/10.1103/PhysRevMaterials.2.035601

    Article  Google Scholar 

  38. Lewis TJ (2002) Polyethylene under electrical stress. IEEE Trans Dielectr Electr Insul 9:717–729

    Article  CAS  Google Scholar 

  39. Jewett AI, Stelter D, Lambert J, Saladi SM, Roscioni OM, Ricci M, Autin L, Maritan M, Bashusqeh SM, Keyes T, Dame RT, Shea JE, Jensen GJ, Goodsell DS (2021) Moltemplate: a tool for coarse-grained modeling of complex biological matter and soft condensed matter physics. J Mol Biol 433:166841. https://doi.org/10.1016/j.jmb.2021.166841

    Article  CAS  Google Scholar 

  40. In’t Veld PJ, Rutledge GC (2003) Temperature-dependent elasticity of a semicrystalline interphase composed of freely rotating chains. Macromolecules 36:7358–7365. https://doi.org/10.1021/ma0346658

    Article  CAS  Google Scholar 

  41. Mokarizadeh Haghighi Shirazi M, Khajouei-Nezhad M, Zebarjad SM, Ebrahimi R (2020) Evolution of the crystalline and amorphous phases of high-density polyethylene subjected to equal-channel angular pressing. Polym Bull 77:1681–1694. https://doi.org/10.1007/s00289-019-02827-7

    Article  CAS  Google Scholar 

  42. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  43. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mat Sci Eng. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  44. Vetter J, Michler GH, Naumann I (1998) TEM observation of latent tracks of heavy ions in semi-crystalline polymers. Radiat Eff Defects Solids 143:273–286. https://doi.org/10.1080/10420159808214032

    Article  CAS  Google Scholar 

  45. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  CAS  Google Scholar 

  46. da Rocha MS, May JPM, Thomaz RS, Papaleo RM, Toulemonde M (2023) Applying the inelastic thermal spike model to the investigation of damage induced by high-energy ions in polymers. Macromol Chem Phys 224:2200339

    Article  Google Scholar 

  47. Blonskaya IV, Kirilkin NS, Kristavchuk OV, Lizunov NE, Mityukhin SA, Orelovich OL, Polezhaeva OA, Apel PY (2023) Visualization and characterization of ion latent tracks in semicrystalline polymers by FESEM. Nucl Instrum Methods Phys Res B 542:66–73

    Article  CAS  Google Scholar 

  48. Håkansson P, Sundqvist B (1982) The velocity dependence of fast heavy-ion induced desorption of biomolecules. Radiat Eff 61:179–193

    Article  Google Scholar 

  49. Dück P, Treu W, Fröhlich H, Galster W, Voit H (1980) Desorption of organic compounds from solid surfaces by bombardment with heavy ions from a tandem accelerator. Surf Sci 95:603–613

    Article  Google Scholar 

  50. Kraft G, Krämer M, Scholz M (1992) LET, track structure and models: a review. Radiat Environ Biophys 31:161–180

    Article  CAS  Google Scholar 

  51. Chatterjee A, Magee JL (1978) Relationship of the track structure of heavy particles to the physical distribution and chemical effects of radicals.

Download references

Acknowledgements

The authors are grateful to Michael V. Sorokin for helpful discussions. PB, SG, RV, and AEV gratefully acknowledge financial support from the Russian Science Foundation (Grant No. 22-22-00676). NM thanks the financial support from the Czech Ministry of Education, Youth, and Sports (grants No. LTT17015, LM2023068, and No. EF16_013/0001552). This work has been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”, " http://ckp.nrcki.ru”.

Author information

Authors and Affiliations

Authors

Contributions

PB contributed to formal analysis, methodology, validation, investigation, writing—original draft, visualization. FA contributed to formal analysis, investigation, data curation, writing—review and editing. SG contributed to formal analysis, writing—original draft, review and editing, visualization. NM contributed to software, formal analysis, writing—review and editing. RR contributed to formal analysis, investigation, data curation, writing—review and editing. RV contributed to formal analysis, writing—review and editing, visualization. AEV contributed to supervision, conceptualization, formal analysis, writing—original draft, review and editing.

Corresponding author

Correspondence to P. Babaev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Ethical approval

Not applicable.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5571 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaev, P., Akhmetov, F., Gorbunov, S. et al. Atomic-scale insights into damage produced by swift heavy ions in polyethylene. J Mater Sci 58, 17275–17291 (2023). https://doi.org/10.1007/s10853-023-09117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09117-8

Navigation