Skip to main content
Log in

Effect of pulsed laser annealing on optical and structural properties of ZnO:Eu thin film

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZnO:Eu thin film fabricated by pulsed laser deposition was treated by pulsed UV laser. The effect of laser fluence from 70 to 125 mJ cm−2 on film properties was investigated. The results showed that the surface morphology was clearly modified and the film treated at laser fluence of 70 mJ cm−2 was more densified compared to the other annealed films. Laser treatment led to a reduction of carbon content and to a stoichiometric ZnO:Eu composition on the surface. Refractive index significantly decreased and extinction coefficient was blue shifted for higher laser fluences. Strong characteristic Eu3+ transitions were obtained using excitation at 266 nm. The highest photoluminescence intensity was observed for the annealed film at a laser fluence of 70 mJ cm−2. The influence of ambient composition (N2 and O2) and temperature (room temperature and 150 °C) to photoluminescence response was examined for optical gas sensor application. The laser-untreated film showed higher sensitivity to the presence of oxygen at both temperatures compared to the treated film. The stability of photoluminescence intensity at elevated temperature was improved for laser-treated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Janotti A, Van De Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72(12):1–29. https://doi.org/10.1088/0034-4885/72/12/126501

    Article  CAS  Google Scholar 

  2. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov M, Doğan S, Morkoç AH (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):1–103. https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  3. Wang J, Chen R, Xiang L, Komarneni S (2018) Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram Int 44(7):7357–7377. https://doi.org/10.1016/j.ceramint.2018.02.013

    Article  CAS  Google Scholar 

  4. Djuriić AB, Ng AMC, Chen XY (2010) ZnO nanostructures for optoelectronics: material properties and device applications. Prog Quant Electron 34(4):191–259. https://doi.org/10.1016/j.pquantelec.2010.04.001

    Article  CAS  Google Scholar 

  5. Kumar V, Ntwaeaborwa OM, Soga T, Dutta V, Swart HC (2017) Rare earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cells. ACS Photonics 4(11):2613–2637. https://doi.org/10.1021/acsphotonics.7b00777

    Article  CAS  Google Scholar 

  6. Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Sol Films 605:2–19. https://doi.org/10.1016/j.tsf.2015.12.064

    Article  CAS  Google Scholar 

  7. Gai S, Li C, Yang P, Lin J (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4):2343–2389. https://doi.org/10.1021/cr4001594

    Article  CAS  Google Scholar 

  8. Ji S, Yin L, Liu G, Zhang L, Ye C (2009) Synthesis of rare earth ions-doped ZnO nanostructures with efficient host-guest energy transfer. J Phys Chem C 113(37):16439–16444. https://doi.org/10.1021/jp906501n

    Article  CAS  Google Scholar 

  9. Cui Y, Yue Y, Qian G, Chen B (2012) Luminescent functional metal-organic frameworks. Chem Rev 112(2):1126–1162. https://doi.org/10.1021/cr200101d

    Article  CAS  Google Scholar 

  10. Pinatti IM, Pereira PFS, de Assis M, Longo E, Rosa ILV (2019) Rare earth doped silver tungstate for photoluminescent applications. J Alloys Compd 771:433–447. https://doi.org/10.1016/j.jallcom.2018.08.302

    Article  CAS  Google Scholar 

  11. Iwan S, Zhao JL, Tan ST, Bambang S, Hikam M, Fan HM, Sun XW (2015) Ion-dependent electroluminescence from trivalent rare-earth doped n-ZnO/p-Si heterostructured light-emitting diodes. Mater Sci Semicond Process 30:263–266. https://doi.org/10.1016/j.mssp.2014.09.048

    Article  CAS  Google Scholar 

  12. Huang M, Wang S, Zhang Y, Wan G, Ou K, Yi L (2019) Intense red electroluminescence from ZnO: Sm3+/Tb3+ LED by efficient energy transfer from Tb3+ to Sm3+. J Lumin 205:243–247. https://doi.org/10.1016/j.jlumin.2018.09.026

    Article  CAS  Google Scholar 

  13. Pecora EF, Murphy TI, Dal Negro L (2012) Rare earth doped Si-rich ZnO for multiband near-infrared light emitting devices. Appl Phys Lett 101(19):1–5. https://doi.org/10.1063/1.4766947

    Article  CAS  Google Scholar 

  14. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3):2088–2106. https://doi.org/10.3390/s100302088

    Article  CAS  Google Scholar 

  15. Hastir A, Kohli N, Singh RC (2017) Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor. J Phys Chem Solids 105:23–34. https://doi.org/10.1016/j.jpcs.2017.02.004

    Article  CAS  Google Scholar 

  16. Sanchez-Valencia JR, Alcaire M, Romero-Gómez P, Macias-Montero M, Aparicio FJ, Borras A, Gonzalez-Elipe AR, Barranco A (2014) Oxygen optical sensing in gas and liquids with nanostructured ZnO thin films based on exciton emission detection. J Phys Chem C 118(18):9852–9859. https://doi.org/10.1021/jp5026027

    Article  CAS  Google Scholar 

  17. Valerini D, Cretì A, Caricato AP, Lomascolo M, Rella R, Martino M (2010) Optical gas sensing through nanostructured ZnO films with different morphologies. Sens Actuat B Chem 145(1):167–173. https://doi.org/10.1016/j.snb.2009.11.064

    Article  CAS  Google Scholar 

  18. Puust L, Kiisk V, Eltermann M, Mändar H, Saar R, Lange S, Sildos I, Dolgov L, Matisen L, Jaaniso R (2017) Effect of ambient oxygen on the photoluminescence of sol-gel-derived nanocrystalline ZrO2:Eu,Nb. J Phys D Appl Phys 50(21):1–7. https://doi.org/10.1088/1361-6463/aa6c48

    Article  CAS  Google Scholar 

  19. Kiisk V, Puust L, Mändar H, Ritslaid P, Rähn M, Bite I, Jankovica D, Sildos I, Jaaniso R (2018) Phase stability and oxygen-sensitive photoluminescence of ZrO2:Eu,Nb nanopowders. Mater Chem Phys 214:135–142. https://doi.org/10.1016/j.matchemphys.2018.04.090

    Article  CAS  Google Scholar 

  20. Eltermann M, Kiisk V, Kikas A, Lange S, Jaaniso R (2020) Multivariable oxygen sensing based on photoluminescence and photoconductivity of TiO2 nanoparticles. Sens Actuat B Chem. https://doi.org/10.1016/j.snb.2019.127236

    Article  Google Scholar 

  21. Kiisk V, Akulitš K, Kodu M, Avarmaa T, Mändar H, Kozlova J, Eltermann M, Puust L, Jaaniso R (2019) Oxygen-sensitive photoluminescence of rare earth ions in TiO2 thin films. J Phys Chem C 123(29):17908–17914. https://doi.org/10.1021/acs.jpcc.9b04588

    Article  CAS  Google Scholar 

  22. Jiang T, Du B, Zhang H, Yu D, Sun L, Zhao G, Yang C, Sun Y, Yu M, Ashfold MNR (2019) High-performance photoluminescence-based oxygen sensing with Pr-modified ZnO nanofibers. Appl Surf Sci 483:922–928. https://doi.org/10.1016/j.apsusc.2019.04.053

    Article  CAS  Google Scholar 

  23. Cerrato E, Gionco C, Berruti I, Sordello F, Calza P, Paganini MC (2018) Rare earth ions doped ZnO: synthesis, characterization and preliminary photoactivity assessment. J Sol State Chem 264:42–47. https://doi.org/10.1016/j.jssc.2018.05.001

    Article  CAS  Google Scholar 

  24. Zamiri R, Lemos AF, Reblo A, Ahangar HA, Ferreira JMF (2014) Effects of rare-earth (Er, la and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceram Int 40:523–529. https://doi.org/10.1016/j.ceramint.2013.06.034

    Article  CAS  Google Scholar 

  25. Raza W, Haque MM, Muneer M (2014) Synthesis of visible light driven ZnO: characterization and photocatalytic performance. Appl Surf Sci 322:215–224. https://doi.org/10.1016/j.apsusc.2014.10.067

    Article  CAS  Google Scholar 

  26. Soumahoro I, Schmerber G, Douayar A, Colis S, Abd-Lefdil M, Hassanain N, Berrada A, Muller D, Slaoui A, Rinnert H, Dinia A (2011) Structural, optical, and electrical properties of Yb-doped ZnO thin films prepared by spray pyrolysis method. J Appl Phys 109(3):1–5. https://doi.org/10.1063/1.3544307

    Article  CAS  Google Scholar 

  27. Farooqi MMH, Srivastava RK (2016) Enhanced UV–vis photoconductivity and photoluminescence by doping of samarium in ZnO nanostructures synthesized by solid state reaction method. Optik 127(8):3991–3998. https://doi.org/10.1016/j.ijleo.2016.01.074

    Article  CAS  Google Scholar 

  28. Balestrieri M, Ferblantier G, Colis S, Schmerber G, Ulhaq-Bouillet C, Muller D, Slaoui A, Dinia A (2013) Structural and optical properties of Yb-doped ZnO films deposited by magnetron reactive sputtering for photon conversion. Sol Energy Mater Sol Cells 117:363–371. https://doi.org/10.1016/j.solmat.2013.06.032

    Article  CAS  Google Scholar 

  29. Ma X, Wang Z (2012) The optical properties of rare earth Gd doped ZnO nanocrystals. Mater Sci Semicond Process 15(3):227–231. https://doi.org/10.1016/j.mssp.2011.05.013

    Article  CAS  Google Scholar 

  30. Novotný M, Vondráček M, Marešová E, Fitl P, Bulíř J, Pokorný P, Havlová Š, Abdellaoui N, Pereira A, Hubík P, More-Chevalier J, Lančok J (2019) Optical and structural properties of ZnO: Eu thin films grown by pulsed laser deposition. Appl Surf Sci 476:271–275. https://doi.org/10.1016/j.apsusc.2019.01.038

    Article  CAS  Google Scholar 

  31. Wolski L, Whitten JE, Sobczak I, Ziolek M (2017) The effect of the preparation procedure on the morphology, texture and photocatalytic properties of ZnO. Mater Res Bull 85:35–46. https://doi.org/10.1016/j.materresbull.2016.08.027

    Article  CAS  Google Scholar 

  32. Rezapour M, Talebian N (2011) Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: effect of synthesis methods and reaction media. Mater Chem Phys 129(1–2):249–255. https://doi.org/10.1016/j.matchemphys.2011.04.012

    Article  CAS  Google Scholar 

  33. Clament Sagaya Selvam N, Judith Vijaya J, John Kennedy L (2013) Comparative studies on influence of morphology and La doping on structural, optical, and photocatalytic properties of zinc oxide nanostructures. J Colloid Interface Sci 407:215–224. https://doi.org/10.1016/j.jcis.2013.06.004

    Article  CAS  Google Scholar 

  34. Rusdi R, Rahman AA, Mohamed NS, Kamarudin N, Kamarulzaman N (2011) Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures. Powder Technol 210(1):18–22. https://doi.org/10.1016/j.powtec.2011.02.005

    Article  CAS  Google Scholar 

  35. Kamarulzaman N, Kasim MF, Rusdi R (2015) Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res Lett 10(1):1–12. https://doi.org/10.1186/s11671-015-1034-9

    Article  CAS  Google Scholar 

  36. Lupan O, Pauporté T, Chow L, Viana B, Pellé F, Ono LK, Roldan Cuenya B, Heinrich H (2010) Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl Surf Sci 256(6):1895–1907. https://doi.org/10.1016/j.apsusc.2009.10.032

    Article  CAS  Google Scholar 

  37. Lee J, Chung J, Lim S (2010) Improvement of optical properties of post-annealed ZnO nanorods. Phys E Low Dimens Syst Nanostruct 42(8):2143–2146. https://doi.org/10.1016/j.physe.2010.04.013

    Article  CAS  Google Scholar 

  38. Otieno F, Airo M, Erasmus RM, Quandt A, Billing DG, Wamwangi D (2020) Annealing effect on the structural and optical behavior of ZnO:Eu3+ thin film grown using RF magnetron sputtering technique and application to dye sensitized solar cells. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-65231-6

    Article  CAS  Google Scholar 

  39. Palneedi H, Park JH, Maurya D, Peddigari M, Hwang GT, Annapureddy V, Kim JW, Choi JJ, Hahn BD, Priya S, Lee KJ, Ryu J (2018) Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv Mater 30(14):1–38. https://doi.org/10.1002/adma.201705148

    Article  CAS  Google Scholar 

  40. CompleteEASE, Data Analysis Manual Version 4.63 (2011). J.A. Woollam Co., Inc., Lincoln, NE

  41. Ozerov I, Arab M, Safarov VI, Marine W, Giorgio S, Sentis M, Nanai L (2004) Enhancement of exciton emission from ZnO nanocrystalline films by pulsed laser annealing. Appl Surf Sci 226:242–248. https://doi.org/10.1016/j.apsusc.2003.11.038

    Article  CAS  Google Scholar 

  42. Novotný M, Čížek J, Kužel R, Bulíř J, Lančok J, Connolly J, McCarthy E, Krishnamurthy S, Mosnier JP, Anwand W, Brauer G (2012) Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition. J Phys D Appl Phys 45(22):1–12. https://doi.org/10.1088/0022-3727/45/22/225101

    Article  CAS  Google Scholar 

  43. Nagase T, Ooie T, Sakakibara J (1999) A novel approach to prepare zinc oxide films: excimer laser irradiation of sol-gel derived precursor films. Thin Sol Films 357(2):151–158. https://doi.org/10.1016/S0040-6090(99)00645-8

    Article  CAS  Google Scholar 

  44. Nedyalkov N, Koleva M, Nikov R, Atanasov P, Nakajima Y, Takami A, Shibata A, Terakawa M (2016) Laser nanostructuring of ZnO thin films. Appl Surf Sci 374:172–176. https://doi.org/10.1016/j.apsusc.2015.10.216

    Article  CAS  Google Scholar 

  45. Novotny M, Hruska P, Fitl P, Maresova E, Havlova S, Bulir J, Fekete L, Yatskiv R, Vrnata M, Cizek J, Liedke MO, Lancok J (2020) Investigation of optical properties and defects structure of rare earth (Sm, Gd, Ho) doped zinc oxide thin films prepared by pulsed laser deposition. Acta Phys Pol A 137(2):215–218. https://doi.org/10.12693/APhysPolA.137.215

    Article  CAS  Google Scholar 

  46. Liu YC, Hsieh JH, Tung SK (2006) Extraction of optical constants of zinc oxide thin films by ellipsometry with various models. Thin Sol Films 510(1–2):32–38. https://doi.org/10.1016/j.tsf.2005.10.089

    Article  CAS  Google Scholar 

  47. Tsakonas C, Cranton W, Li F, Abusabee K, Flewitt A, Koutsogeorgis D, Ranson R (2013) Intrinsic photoluminescence from low temperature deposited zinc oxide thin films as a function of laser and thermal annealing. J Phys D Appl Phys 46(9):1–9. https://doi.org/10.1088/0022-3727/46/9/095305

    Article  CAS  Google Scholar 

  48. Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45. https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  49. Kolesnikov IE, Povolotskiy AV, Mamonova DV, Kolesnikov EY, Kurochkin AV, Lähderanta E, Mikhailov MD (2018) Asymmetry ratio as a parameter of Eu3+ local environment in phosphors. J Rare Earth 36(5):474–481. https://doi.org/10.1016/j.jre.2017.11.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Czech Science Foundation (Project GA18-17834S), Czech Ministry of Education, Youth and Sports (SOLID21—CZ.02.1.01/0.0/0.0/16_019/0000760), and by institutional research funding (IUT34-27) of the Estonian Ministry of Education and Research. International collaboration was supported by a bilateral project between Academies of Sciences—Czech and Estonian (EST-18-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Š. Havlová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 313KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Havlová, Š., Novotný, M., Fitl, P. et al. Effect of pulsed laser annealing on optical and structural properties of ZnO:Eu thin film. J Mater Sci 56, 11414–11425 (2021). https://doi.org/10.1007/s10853-021-06030-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06030-w

Navigation