Skip to main content
Log in

Magnetoelectric coupling in multiferroic Z-type hexaferrite revealed by electric-field-modulated magnetic resonance studies

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Temperature dependence of ferromagnetic resonance (FMR) frequency fFMR was revealed in Z-type hexaferrite (BaxSr1−x)3Co2Fe24O41 using microwave spectroscopy in zero external magnetic field. A linear decrease in fFMR toward magnetic phase transition temperature Tc2 = 500 K was observed, implicating magnetic anisotropy decrease. Ferromagnetic resonance studies performed near 9 GHz with the magnetic field up to 10 kOe also confirmed FMR anomaly near 500 K, where the magnetic structure changes from conical to collinear. FMR spectra are tunable by external dc and ac (100 kHz) electric fields which allowed us to determine the value of magnetoelectric coefficient αE = 390 ps/m at 170 K. αE is at about 0.5 kOe one order of magnitude lower than the reported value at 10 K, because in our case the electric field was applied along c-axis, while the previously reported value was obtained with the field in hexagonal plane. Nevertheless, our αE is still one or even four orders of magnitude higher than in other “high-temperature” multiferroics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Khomskii D (2009) Classifying multiferroics: mechanisms and effects. Physics 2:20

    Article  Google Scholar 

  2. Tokura Y, Seki S, Nagaosa N (2014) Multiferroics of spin origin. Rep Prog Phys 77:076501

    Article  CAS  Google Scholar 

  3. Dong S, Liu J-M, Cheong S-W, Ren Z (2015) Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv Phys 64:519–626

    Article  CAS  Google Scholar 

  4. Bousquet E, Cano A (2016) Non-collinear magnetism in multiferroic perovskites. J Phys Condens Matter 28:123001

    Article  CAS  Google Scholar 

  5. Trukhanov AV, Trukhanov SV, Kostishin VG, Panina LV, Salem MM, Kazakevich IS, Turchenko VA, Kochervinskii VV, Krivchenya DA (2017) Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites. Phys Sol State 59:737–745

    Article  CAS  Google Scholar 

  6. Turchenko V, Kostishyn VG, Trukhanov S, Damay F, Porcher F, Balasoiu M, Lupu N, Bozzo B, Fina I, Trukhanov A, Waliszewski J, Recko K, Polosan S (2020) Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with In ions. J Alloys Compd 821:153412

    Article  CAS  Google Scholar 

  7. Kimura T (2012) Magnetoelectric hexaferrites. Ann Rev Condens Matter Phys 3:93–110

    Article  CAS  Google Scholar 

  8. Ishiwata S, Taguchi Y, Murakawa H, Onose Y, Tokura Y (2008) Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319:1644

    Article  CAS  Google Scholar 

  9. Chun SH, Chai YS, Oh YS, Jaiswal-Nagar D, Haam SY, Kim I, Lee B, Nam DH, Ko KT, Park JH, Chung JH, Kim KH (2010) Realization of giant magnetoelectricity in helimagnets. Phys Rev Lett 104:037204

    Article  CAS  Google Scholar 

  10. Chun SH, Chai YS, Jeon B-G, Kim HJ, Oh YS, Kim I, Kim H, Jeon BJ, Haam SY, Park J-Y, Lee SH, Chung J-H, Park J-H, Kim KH (2012) Electric field control of nonvolatile four-state magnetization at room temperature. Phys Rev Lett 108:177201

    Article  CAS  Google Scholar 

  11. Song YQ, Fang Y, Wang LY, Zhou WP, Cao QQ, Wang DH, Du YW (2014) Spin reorientation transition and near room-temperature multiferroic properties in a W-type hexaferrite SrZn1.15Co0.85Fe16O27. J Appl Phys 115:093905

    Article  CAS  Google Scholar 

  12. Zhai K, Wu Y, Shen S, Tian W, Cao H, Chai Y, Chakoumakos BC, Shang D, Yan L, Wang F, Sun Y (2017) Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites. Nat Commun 8:519

    Article  CAS  Google Scholar 

  13. Shen S-P, Sun Y (2018) Magnetoelectric multiferroicity and quantum paraelectricity in hexaferrites. Sci China Phys Mech Astronomy 62:47501

    Article  CAS  Google Scholar 

  14. Chai YS, Chun SH, Cong JZ, Kim KH (2018) Magnetoelectricity in multiferroic hexaferrites as understood by crystal symmetry analyses. Phys Rev B 98:104416

    Article  Google Scholar 

  15. Shen S-P, Liu X-Z, Chai Y-S, Studer A, Rule K, Zhai K, Yan L-Q, Shang D-S, Klose F, Liu Y-T, Chen D-F, Sun Y (2017) Hidden spin-order-induced room-temperature ferroelectricity in a peculiar conical magnetic structure. Phys Rev B 95:094405

    Article  Google Scholar 

  16. Kida N, Kumakura S, Ishiwata S, Taguchi Y, Tokura Y (2011) Gigantic terahertz magnetochromism via electromagnons in the hexaferrite magnet Ba2Mg2Fe12O22. Phys Rev B 83:064422

    Article  CAS  Google Scholar 

  17. Kadlec F, Kadlec C, Vít J, Borodavka F, Kempa M, Prokleška J, Buršík J, Uhrecký R, Rols S, Chai YS, Zhai K, Sun Y, Drahokoupil J, Goian V, Kamba S (2016) Electromagnon in the Z-type hexaferrite (BaxSr1-x)3Co2Fe24O41. Phys Rev B 94:024419

    Article  CAS  Google Scholar 

  18. Nakajima T, Takahashi Y, Kibayashi S, Matsuda M, Kakurai K, Ishiwata S, Taguchi Y, Tokura Y, Arima T-h (2016) Electromagnon excitation in the field-induced noncollinear ferrimagnetic phase of Ba2Mg2Fe12O22 studied by polarized inelastic neutron scattering and terahertz time-domain optical spectroscopy. Phys Rev B 93:035119

    Article  CAS  Google Scholar 

  19. Nakajima T, Tokunaga Y, Matsuda M, Dissanayake S, Fernandez-Baca J, Kakurai K, Taguchi Y, Tokura Y, Arima T-h (2016) Magnetic structures and excitations in a multiferroic Y-type hexaferrite BaSrCo2Fe11AlO22. Phys Rev B 94:195154

    Article  Google Scholar 

  20. Vít J, Kadlec F, Kadlec C, Borodavka F, Chai YS, Zhai K, Sun Y, Kamba S (2018) Electromagnon in the Y-type hexaferrite BaSrCoZnFe11AlO22. Phys Rev B 97:134406

    Article  Google Scholar 

  21. Chun SH, Shin KW, Kim HJ, Jung S, Park J, Bahk Y-M, Park H-R, Kyoung J, Choi D-H, Kim D-S, Park G-S, Mitchell JF, Kim KH (2018) Electromagnon with sensitive terahertz magnetochromism in a room-temperature magnetoelectric hexaferrite. Phys Rev Lett 120:027202

    Article  CAS  Google Scholar 

  22. Shishikura H, Tokunaga Y, Takahashi Y, Masuda R, Taguchi Y, Kaneko Y, Tokura Y (2018) Electromagnon resonance at room temperature with gigantic magnetochromism. Phys Rev Appl 9:044033

    Article  CAS  Google Scholar 

  23. Iguchi Y, Nii Y, Onose Y (2017) Magnetoelectrical control of nonreciprocal microwave response in a multiferroic helimagnet. Nat Commun 8:15252

    Article  CAS  Google Scholar 

  24. Maisuradze A, Shengelaya A, Berger H, Djokić DM, Keller H (2012) Magnetoelectric coupling in single crystal Cu2OSeO3 studied by a novel electron spin resonance technique. Phys Rev Lett 108:247211

    Article  CAS  Google Scholar 

  25. Popova E, Shengelaya A, Daraselia D, Japaridze D, Cherifi-Hertel S, Bocher L, Gloter A, Stéphan O, Dumont Y, Keller N (2017) Bismuth iron garnet Bi3Fe5O12: a room temperature magnetoelectric material. Appl Phys Lett 110:142404

    Article  CAS  Google Scholar 

  26. Fittipaldi M, Cini A, Annino G, Vindigni A, Caneschi A, Sessoli R (2019) Electric field modulation of magnetic exchange in molecular helices. Nat Mater 18:329–334

    Article  CAS  Google Scholar 

  27. Khazaradze G, Daraselia D, Japaridze D, Shengelaya A (2019) Magnetoelectric coupling in Y-type hexaferrite studied by a novel magnetic resonance technique. Magn Reson Solids 21:19307

    Article  Google Scholar 

  28. Zhou Z, Peng B, Zhu M, Liu M (2016) Voltage control of ferromagnetic resonance. J Adv Dielectr 06:1630005

    Article  CAS  Google Scholar 

  29. Zhao X, Hu Z, Yang Q, Peng B, Zhou Z, Liu M (2018) Voltage control of ferromagnetic resonance and spin waves. Chin Phys B 27:097505

    Article  CAS  Google Scholar 

  30. Hirose S, Haruki K, Ando A, Kimura T, Chen XM (2015) Effect of high-pressure oxygen annealing on electrical and magnetoelectric properties of BaSrCo2Fe11AlO22 ceramics. J Am Ceram Soc 98:2104–2111

    Article  CAS  Google Scholar 

  31. Keysight 16454A Magnetic material test fixture. Keysight Technologies, pp 16454–90020 (2017). http://literature.cdn.keysight.com/litweb/pdf/16454-90020.pdf. Accessed Sept 2017

  32. Ebnabbasi K, Mohebbi M, Vittoria C (2012) Magnetoelectric effects at microwave frequencies on Z-type hexaferrite. Appl Phys Lett 101:062406

    Article  CAS  Google Scholar 

  33. Ebnabbasi K, Chen Y, Geiler A, Harris V, Vittoria C (2012) Magneto-electric effects on Sr Z-type hexaferrite at room temperature. J Appl Phys 111:07C719

    Article  CAS  Google Scholar 

  34. Tang R, Jiang C, Qian W, Jian J, Zhang X, Wang H, Yang H (2015) Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci Rep 5:13645

    Article  CAS  Google Scholar 

  35. Chang P, He L, Wei D, Wang H (2016) Textured Z-type hexaferrites Ba3Co2Fe24O41 ceramics with high permeability by reactive templated grain growth method. J Eur Ceram Soc 36:2519–2524

    Article  CAS  Google Scholar 

  36. Tachibana T, Nakagawa T, Takada Y, Izumi K, Yamamoto TA, Shimada T, Kawano S (2003) X-ray and neutron diffraction studies on iron-substituted Z-type hexagonal barium ferrite: Ba3Co2−xFe24+xO41 (x = 0–0.6). J Magn Magn Mater 262:248–257

    Article  CAS  Google Scholar 

  37. Li ZW, Yang ZH (2013) Effect of Ti substitution on dynamic and static magnetic properties for hexaferrites. J Magn Magn Mater 334:5–10

    Article  CAS  Google Scholar 

  38. Trukhanov AV, Kostishyn VG, Panina LV, Korovushkin VV, Turchenko VA, Thakur P, Thakur A, Yang Y, Vinnik DA, Yakovenko ES, Matzui LY, Trukhanova EL, Trukhanov SV (2018) Control of electromagnetic properties in substituted M-type hexagonal ferrites. J Alloys Compd 754:247–256

    Article  CAS  Google Scholar 

  39. Takada Y, Nakagawa T, Tokunaga M, Fukuta Y, Tanaka T, Yamamoto TA, Tachibana T, Kawano S, Ishii Y, Igawa N (2006) Crystal and magnetic structures and their temperature dependence of Co2 Z-type hexaferrite (Ba, Sr)3Co2Fe24O41 by high-temperature neutron diffraction. J Appl Phys 100:043904

    Article  CAS  Google Scholar 

  40. Soda M, Ishikura T, Nakamura H, Wakabayashi Y, Kimura T (2011) Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41. Phys Rev Lett 106:087201

    Article  CAS  Google Scholar 

  41. Vonsovskii SV (1966) Ferromagnetic resonance: the phenomenon of resonant absorption of a high-frequency magnetic field in ferromagnetic. Pergamon Press, Oxford

    Google Scholar 

  42. Niu H, Pitcher MJ, Corkett AJ, Ling S, Mandal P, Zanella M, Dawson K, Stamenov P, Batuk D, Abakumov AM, Bull CL, Smith RI, Murray CA, Day SJ, Slater B, Cora F, Claridge JB, Rosseinsky MJ (2017) Room temperature magnetically ordered polar corundum GaFeO3 displaying magnetoelectric coupling. J Am Chem Soc 139:1520–1531

    Article  CAS  Google Scholar 

  43. Wiegelmann H, Jansen AGM, Wyder P, Rivera JP, Schmid H (1994) Magnetoelectric effect of Cr2O3 in strong static magnetic fields. Ferroelectrics 162:141–146

    Article  Google Scholar 

  44. Popkov AF, Davydova MD, Zvezdin KA, Solov’yov SV, Zvezdin AK (2016) Origin of the giant linear magnetoelectric effect in perovskitelike multiferroic BiFeO3. Phys Rev B 93:094435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (Project No. 18-09265S) and by the Operational Programme Research, Development and Education (financed by European Structural and Investment Funds and by the Czech Ministry of Education, Youth and Sports), Projects Nos. SOLID21 - CZ.02.1.01/0.0/0.0/16_019/0000760, CZ.02.1.01/0.0/0.0/16_013/0001406 and LO1409.

Author information

Authors and Affiliations

Authors

Contributions

VL performed the FMR measurements, VB and MK measured the microwave permeability spectra, JB prepared the ceramic samples, KZ and YS provided the hexaferrite single crystal, and SK and VL wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Stanislav Kamba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laguta, V., Kempa, M., Bovtun, V. et al. Magnetoelectric coupling in multiferroic Z-type hexaferrite revealed by electric-field-modulated magnetic resonance studies. J Mater Sci 55, 7624–7633 (2020). https://doi.org/10.1007/s10853-020-04563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04563-0

Navigation