Skip to main content
Log in

Wave operators, torsion, and Weitzenböck identities

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The current article offers a mathematical toolkit for the study of waves propagating on spacetimes with nonvanishing torsion. The toolkit comprises generalized versions of the Lichnerowicz–de Rham and the Beltrami wave operators, and the Weitzenböck identity relating them on Riemann–Cartan geometries. The construction applies to any field belonging to a matrix representation of a Lie (super) algebra containing an \(\mathfrak {so} \left( \eta _{+}, \eta _{-} \right) \) subalgebra. These tools allow us to study the propagation of waves on an Einstein–Cartan background at different orders in the eikonal parameter. It stands in strong contrast with more traditional approaches that are restricted to studying only the leading order for waves on this kind of geometry (“plane waves”). The current article focuses only on the mathematical aspects and offers proofs and generalizations for some results already used in physical applications. In particular, the subleading analysis proves that torsion affects the propagation of amplitude and polarization for fields in some representations. These results suggest how one may use gravitational waves and multimessenger events as probes for torsion and the spin tensor of dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. In this article we use in general a non-vanishing torsion, but the metricity condition is always imposed, \(\nabla _{\lambda }g_{\mu \nu }=0\).

  2. The result also has a dark origin. To the best of our knowledge, the name “Weitzenböck identity” seems to be a misattribution, as the identity never appears in the work of Austrian mathematician Roland Weitzenböck (1885–1955). If the reader has information about the real origin of the identity, we would be glad to be contacted and to learn about it.

  3. We use the notation \(\mathring{X}\) to denote the “torsionless version” of X.

References

  1. Scientific, L.I.G.O., Virgo Collaboration, B.P.A., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    Article  ADS  Google Scholar 

  2. Abbott, B.P., et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817a. Astrophys. J. 848(2), L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

  3. Abbott, B.P., et al.: Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848(2), L12,(2017). https://doi.org/10.3847/2041-8213/aa91c9

  4. Goldstein, A., Veres, P., Burns, E., Briggs, M.S., Hamburg, R., Kocevski, D., Wilson-Hodge, C.A., Preece, R.D., Poolakkil, S., Roberts, O.J., Hui, C.M., Connaughton, V., Racusin, J., von Kienlin, A., Canton, T.D., Christensen, N., Littenberg, T., Siellez, K., Blackburn, L., Broida, J., Bissaldi, E., Cleveland, W.H., Gibby, M.H., Giles, M.M., Kippen, R.M., McBreen, S., McEnery, J., Meegan, C.A., Paciesas, W.S., Stanbro, M.: An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817a. Astrophys. J. 848(2), L14 (2017). https://doi.org/10.3847/2041-8213/aa8f41

    Article  ADS  Google Scholar 

  5. Ezquiaga, J.M., Zumalacárregui, M.: Dark energy in light of multi-messenger gravitational-wave astronomy. Front. Astron. Space Sci. 5, 44 (2018). https://doi.org/10.3389/fspas.2018.00044. arXiv:1807.09241 [astro-ph.CO]

  6. Ezquiaga, J.M., Zumalacárregui, M.: Dark Energy After GW170817: Dead Ends and the Road Ahead. Phys. Rev. Lett. 119(25), 251304 (2017). https://doi.org/10.1103/PhysRevLett.119.251304. arXiv:1710.05901 [astro-ph.CO]

  7. Baker, T., Bellini, E., Ferreira, P.G., Lagos, M., Noller, J., Sawicki, I.: Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys. Rev. Lett. 119(25), 251301 (2017). https://doi.org/10.1103/PhysRevLett.119.251301. arXiv:1710.06394 [astro-ph.CO]

  8. Sakstein, J., Jain, B.: Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. Phys. Rev. Lett. 119(25), 251303 (2017). https://doi.org/10.1103/PhysRevLett.119.251303. arXiv:1710.05893 [astro-ph.CO]

  9. Heisenberg, L., Tsujikawa, S.: Dark energy survivals in massive gravity after GW170817: SO(3) invariant. JCAP 1801(01), 044 (2018). https://doi.org/10.1088/1475-7516/2018/01/044. arXiv:1711.09430 [gr-qc]

  10. Kreisch, C.D., Komatsu, E.: Cosmological constraints on Horndeski gravity in light of GW170817. JCAP 1812(12), 030 (2018). https://doi.org/10.1088/1475-7516/2018/12/030. arXiv:1712.02710 [astro-ph.CO]

  11. Nojiri, S., Odintsov, S.D.: Cosmological Bound from the Neutron Star Merger GW170817 in scalar-tensor and \(F(R)\) gravity theories. Phys. Lett. B 779, 425–429 (2018). https://doi.org/10.1016/j.physletb.2018.01.078. arXiv:1711.00492 [astro-ph.CO]

  12. Barrientos, J., Cordonier-Tello, F., Corral, C., Izaurieta, F., Medina, P., Rodríguez, E., Valdivia, O.: Luminal propagation of gravitational waves in scalar-tensor theories: the case for torsion. Phys. Rev. D 100(12), 124039 (2019). https://doi.org/10.1103/PhysRevD.100.124039. arXiv:1910.00148 [gr-qc]

  13. Garcia, A., Macias, A., Puetzfeld, D., Socorro, J.: Plane fronted waves in metric affine gravity. Phys. Rev. D 62, 044021 (2000). https://doi.org/10.1103/PhysRevD.62.044021. arXiv:gr-qc/0005038

  14. Obukhov, Y.N.: Plane waves in metric-affine gravity. Phys. Rev. D 73, 024025 (2006). https://doi.org/10.1103/PhysRevD.73.024025. arXiv:gr-qc/0601074

  15. Obukhov, Y.N.: Gravitational waves in Poincaré gauge gravity theory. Phys. Rev. D 95(8), 084028 (2017). https://doi.org/10.1103/PhysRevD.95.084028. arXiv:1702.05185 [gr-qc]

  16. Jiménez-Cano, Alejandro: New metric-affine generalizations of gravitational wave geometries. Eur. Phys. J. C 80(7), 672 (2020). https://doi.org/10.1140/epjc/s10052-020-8239-5

    Article  ADS  Google Scholar 

  17. Alexander, S., Jenks, L., Jirouvsek, P., Magueijo, J., Złośnik, T.: Gravity waves in parity-violating Copernican Universes. arXiv:2001.06373 [gr-qc]

  18. Jiménez-Cano, A., Obukhov, Y.N.: Gravitational waves in metric-affine gravity theory. Phys. Rev. D 103(2), 024018 (2021). https://doi.org/10.1103/PhysRevD.103.024018. arXiv:2010.14528 [gr-qc]

  19. Santana, L.T., Calvão, M.O., Reis, R.R.R., Siffert, B.B.: How does light move in a generic metric-affine background? Phys. Rev. D 95(6), 061501 (2017). https://doi.org/10.1103/PhysRevD.95.061501. arXiv:1703.10871 [gr-qc]

  20. Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212–221 (1961). https://doi.org/10.1063/1.1703702

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Sciama, D.W.: The Physical structure of general relativity. Rev. Mod. Phys. 36, 463–469 (1964). https://doi.org/10.1103/RevModPhys.36.1103 [Erratum: Rev. Mod. Phys. 36, 1103 (1964)]

  22. Hehl, F.W., Datta, B.K.: Nonlinear spinor equation and asymmetric connection in general relativity. J. Math. Phys. 12, 1334–1339 (1971). https://doi.org/10.1063/1.1665738

    Article  ADS  MathSciNet  Google Scholar 

  23. Kleinert, H.: Multivalued Fields. World Scientific (2008). https://doi.org/10.1142/6742

  24. Kleinert, H.: Gauge Fields in Condensed Matter. World Scientific (1989). https://doi.org/10.1142/0356

  25. Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976). https://doi.org/10.1103/RevModPhys.48.393

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Shapiro, I.L.: Physical aspects of the space-time torsion. Phys. Rept. 357, 113 (2002). https://doi.org/10.1016/S0370-1573(01)00030-8. arXiv:hep-th/0103093 [hep-th]

  27. Hammond, R.T.: Torsion gravity. Rept. Prog. Phys. 65, 599–649 (2002). https://doi.org/10.1088/0034-4885/65/5/201

    Article  ADS  MathSciNet  Google Scholar 

  28. Popławski, N. J.: Spacetime and fields. arXiv:0911.0334 [gr-qc]

  29. Kerlick, G.D.: Cosmology and particle pair production via gravitational spin-spin interaction in the Einstein–Cartan–Sciama–Kibble theory of gravity. Phys. Rev. D 12, 3004–3006 (1975). https://doi.org/10.1103/PhysRevD.12.3004

    Article  ADS  Google Scholar 

  30. Barrientos, J., Cordonier-Tello, F., Izaurieta, F., Medina, P., Narbona, D., Rodríguez, E., Valdivia, O.: Nonminimal couplings, gravitational waves, and torsion in Horndeski’s theory. Phys. Rev. D 96(8), 084023 (2017). https://doi.org/10.1103/PhysRevD.96.084023. arXiv:1703.09686 [gr-qc]

  31. Hehl, F.W.: Four lectures on Poincaré gauge field theory. In: Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, P. G. Bergmann and V. De Sabbata, eds., pp. 5–62. Plenum Press, New York, 1980. Proceedings of the NATO Advanced Study Institute on Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, held at the Ettore Majorana International Center for Scientific Culture, Erice, Italy, May 6–8, 1979

  32. Blagojević, M., Hehl, F.W. (eds.): Gauge Theories of Gravitation. World Scientific, Singapore (2013). https://doi.org/10.1142/p781

  33. Alexander, S., Cortês, M., Liddle, A.R., Magueijo, J., Sims, R., Smolin, L.: The cosmology of minimal varying Lambda theories. Phys. Rev. D 100(8), 083507 (2019). arXiv:1905.10382 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  34. Magueijo, J., Złośnik, T.: Parity violating Friedmann Universes. Phys. Rev. D 100(8), 084036 (2019). https://doi.org/10.1103/PhysRevD.100.084036. arXiv:1908.05184 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  35. Barker, W., Lasenby, A., Hobson, M., Handley, W.: Addressing \(H_0\) tension with emergent dark radiation in unitary gravity. arXiv:2003.02690 [gr-qc]

  36. Toloza, A., Zanelli, J.: Cosmology with scalar-Euler form coupling. Class. Quant. Grav. 30, 135003 (2013). https://doi.org/10.1088/0264-9381/30/13/135003. arXiv:1301.0821 [gr-qc]

  37. Castellani, L., D’Auria, R., Fré, P.: Supergravity and Superstrings: A Geometric Perspective. World Scientific (1991). https://doi.org/10.1142/0224

  38. Izaurieta, F., Lepe, S., Valdivia, O.: The spin tensor of dark matter and the Hubble parameter tension. Phys. Dark Univer. 30 100662, (2020). https://doi.org/10.1016/j.dark.2020.100662. arXiv:2004.13163 [gr-qc]

  39. Freedman, D.Z., Proeyen, A.V.: Supergravity, 1st edn. Cambridge University Press, vol. 5 (2012)

  40. Chandia, O., Zanelli, J.: Supersymmetric particle in a space-time with torsion and the index theorem. Phys. Rev. D 58, 045014 (1998). https://doi.org/10.1103/PhysRevD.58.045014. arXiv:hep-th/9803034 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. Puetzfeld, D., Obukhov, Y.N.: Prospects of detecting spacetime torsion. Int. J. Mod. Phys. D 23(12), 1442004 (2014). https://doi.org/10.1142/S0218271814420048. arXiv:1405.4137 [gr-qc]

  42. Zakharov, V.D.: Gravitational Waves in Einstein’s Theory. Translated from Russian by R. N. Sen. Israel Program for Scientific Translations, Jerusalem. Halsted Press, New York (1973)

  43. Bourguignon, J.-P.: The “magic” of Weitzenböck formulas, pp. 251–271. Birkhäuser Boston, Boston (1990).https://doi.org/10.1007/978-1-4757-1080-9_17

  44. Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics, vol. I: Basics, 2nd edn. North Holland Publishing Company (1982)

  45. Griffiths, P.A., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978).https://doi.org/10.1002/9781118032527

  46. Flanders, H.: Differential Forms with Applications to the Physical Sciences. Dover Publications (1989)

  47. Freund, P.G.O.: Introduction to Supersymmetry. Cambridge Monographs on Mathematical Physics. Cambridge University Press (1986).https://doi.org/10.1017/CBO9780511564017

  48. Zanelli, J.: Lecture notes on Chern–Simons (super-)gravities, Second edition (February 2008). In: Proceedings, 7th Mexican Workshop on Particles and Fields (MWPF 1999): Merida, Mexico, November 10–17, 1999 (2005). arXiv:hep-th/0502193 [hep-th]

  49. Salgado, S., Izaurieta, F., Gonzalez, N., Rubio, G.: Gauged Wess–Zumino–Witten actions for generalized Poincare algebras. Phys. Lett. B 732, 255–262 (2014). https://doi.org/10.1016/j.physletb.2014.03.038

    Article  ADS  MATH  Google Scholar 

  50. Fierro, O., Izaurieta, F., Salgado, P., Valdivia, O.: Minimal AdS-Lorentz supergravity in three-dimensions. Phys. Lett. B 788, 198–205 (2019). https://doi.org/10.1016/j.physletb.2018.10.066. arXiv:1401.3697 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Salgado, P., Szabo, R.J., Valdivia, O.: Topological gravity and transgression holography. Phys. Rev. D 89(8), 084077 (2014). https://doi.org/10.1103/PhysRevD.89.084077. arXiv:1401.3653 [hep-th]

    Article  ADS  Google Scholar 

  52. Szabo, R.J., Valdivia, O.: Covariant quiver gauge theories. JHEP 06, 144 (2014). https://doi.org/10.1007/JHEP06(2014)144. arXiv:1404.4319 [hep-th]

    Article  ADS  Google Scholar 

  53. Diaz, J., Fierro, O., Izaurieta, F., Merino, N., Rodríguez, E., Salgado, P., Valdivia, O.: A generalized action for (2 + 1)-dimensional Chern–Simons gravity. J. Phys. A 45, 255207 (2012). https://doi.org/10.1088/1751-8113/45/25/255207. arXiv:1311.2215 [gr-qc]

  54. Izaurieta, F., Rodríguez, E.: On eleven-dimensional Supergravity and Chern–Simons theory. Nucl. Phys. B 855, 308–319 (2012). https://doi.org/10.1016/j.nuclphysb.2011.10.012. arXiv:1103.2182 [hep-th]

  55. Izaurieta, F., Rodríguez, E., Minning, P., Salgado, P., Perez, A.: Standard General Relativity from Chern–Simons Gravity. Phys. Lett. B 678, 213–217 (2009). https://doi.org/10.1016/j.physletb.2009.06.017. arXiv:0905.2187 [hep-th]

  56. Izaurieta, F., Rodríguez, E., Salgado, P.: Eleven-dimensional gauge theory for the M algebra as an Abelian semigroup expansion of OSP(32|1). Eur. Phys. J. C 54, 675–684 (2008). https://doi.org/10.1140/epjc/s10052-008-0540-7. arXiv:hep-th/0606225

  57. Bini, D., Cherubini, C., Jantzen, R.T., Ruffini, R.: De Rham wave equation for tensor valued \(p\)-forms. Int. J. Mod. Phys. D 12(08), 1363–1384 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  58. Izaurieta, F., Rodríguez, E., Valdivia, O.: Linear and second-order geometry perturbations on spacetimes with torsion. Eur. Phys. J. C 79(4), 337 (2019). https://doi.org/10.1140/epjc/s10052-019-6852-y. arXiv:1901.06400 [gr-qc]

    Article  ADS  Google Scholar 

  59. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman & Company (1973)

  60. Maggiore, M.: Gravitational Waves. Vol. 1: Theory and Experiments. Oxford Master Series in Physics. Oxford University Press (2007). http://www.oup.com/uk/catalogue/?ci=9780198570745

  61. Asenjo, F.A., Hojman, S.A.: Birefringent light propagation on anisotropic cosmological backgrounds. Phys. Rev. D 96, 044021 (2017). https://doi.org/10.1103/PhysRevD.96.044021

    Article  ADS  MathSciNet  Google Scholar 

  62. Asenjo, F.A., Hojman, S.A.: Do electromagnetic waves always propagate along null geodesics? Class. Quant. Grav. 34(20), 205011 (2017). https://doi.org/10.1088/1361-6382/aa8b48. arXiv:1608.06572 [gr-qc]

  63. Azcárraga, J.A.d., Izquierdo, J.M.: Lie Groups, Lie Algebras, Cohomology and some Applications in Physics. Cambridge Monographs on Mathematical Physics. Cambridge University Press (1995).https://doi.org/10.1017/CBO9780511599897

  64. de Azcarraga, J.A., Macfarlane, A.J., Mountain, A.J., Perez Bueno, J.C.: Invariant tensors for simple groups. Nucl. Phys. B 510, 657–687 (1998). https://doi.org/10.1016/S0550-3213(97)00609-3. arXiv:physics/9706006

  65. Poplawski, N.J.: On the polarization of nonlinear gravitational waves. arXiv:1110.0051 [gr-qc]

  66. Tilquin, A., Schucker, T.: Torsion, an alternative to dark matter? Gen. Relativ. Gravit. 43, 2965–2978 (2011). https://doi.org/10.1007/s10714-011-1222-6. arXiv:1104.0160 [astro-ph.CO]

Download references

Acknowledgements

We are grateful to Emilio Elizalde, Sergei Odintsov, Yuri Bonder, Fabrizio Canfora, Oscar Castillo-Felisola, Fabrizio Cordonier-Tello, Cristóbal Corral, Nicolás González, Perla Medina, Daniela Narbona, Julio Oliva, Francisca Ramírez, Patricio Salgado, Sebastián Salgado, Jorge Zanelli, and Alfonso Zerwekh for many enlightening conversations. JB acknowledges financial support from ANID grant 21160784, and by the “Programme to support prospective human resources–post Ph.D. candidates” of the Czech Academy of Sciences, project L100192101. FI acknowledges financial support from the Chilean government through Fondecyt grants 1150719, 1180681 and 1211219. FI is thankful of the emotional support of the Netherlands Bach Society. They made freely available superb quality recordings of the music of Bach, and without them, this work would have been impossible. OV acknowledges to ICE-CSIC for the hospitality, VRIIP-UNAP for financial support through Project VRIIP0258-18, Becas Chile ANID project 74200062 and Fondecyt 11200742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Valdivia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Open superalgebra of operators

In this appendix we deduce the open superalgebra Eqs. (70)–(75) satisfied by the operators \(\mathrm {I}_{a}\), \(\mathrm {D}\), and \(\mathcal {D}_{b}\), with the commutator and anticonmmutator defined as

$$\begin{aligned} \left[ A,B\right]&:=AB-BA\,, \end{aligned}$$
(107)
$$\begin{aligned} \left\{ C,D\right\}&:=CD+DC\,. \end{aligned}$$
(108)

Let us start by consider a generic p-form

$$\begin{aligned} \Phi ^{m_{1}\cdots m_{m}}=\frac{1}{p!}\Phi ^{m_{1}\cdots m_{m}}{}_{c_{1}\cdots c_{p}}e^{c_{1}}\wedge \cdots \wedge e^{c_{p}}\,, \end{aligned}$$
(109)

and let us apply the commutator \(\left[ \mathrm {I}_{a},\mathcal {D} _{b}\right] \) on it,

$$\begin{aligned} \left[ \mathrm {I}_{a},\mathcal {D}_{b}\right] \Phi ^{m_{1}\cdots m_{m} }=\mathrm {I}_{a}\mathcal {D}_{b}\Phi ^{m_{1}\cdots m_{m}}-\mathcal {D} _{b}\mathrm {I}_{a}\Phi ^{m_{1}\cdots m_{m}}\,. \end{aligned}$$
(110)

After some algebra, it is straightforward to prove that

$$\begin{aligned} \mathcal {D}_{b}\Phi ^{m_{1}\cdots m_{m}}=\frac{1}{p!}\mathcal {D}_{b}\Phi ^{m_{1}\cdots m_{m}}{}_{c_{1}\cdots c_{p}}e^{c_{1}}\wedge \cdots \wedge e^{c_{p}}+\mathrm {I}_{b}T^{c}\wedge \mathrm {I}_{c}\Phi ^{m_{1}\cdots m_{m}}\,, \end{aligned}$$
(111)

and therefore

$$\begin{aligned} \mathrm {I}_{a}\mathcal {D}_{b}\Phi ^{m_{1}\cdots m_{m}}= & {} \frac{1}{\left( p-1\right) !}\mathcal {D}_{b}\Phi ^{m_{1}\cdots m_{m}}{}_{ac_{2}\cdots c_{p} }e^{c_{2}}\wedge \cdots \wedge e^{c_{p}}-T^{c}{}_{ab}\mathrm {I}_{c}\Phi ^{m_{1}\cdots m_{m}}\nonumber \\&+\,\mathrm {I}_{b}T^{c_{1}}\wedge \mathrm {I}_{ac_{1}} \Phi ^{m_{1}\cdots m_{m}}\,. \end{aligned}$$
(112)

In a similar way, we have that

$$\begin{aligned} \mathcal {D}_{b}\mathrm {I}_{a}\Phi ^{m_{1}\cdots m_{m}}=\frac{1}{\left( p-1\right) !}\mathcal {D}_{b}\Phi ^{m_{1}\cdots m_{m}}{}_{ac_{2}\cdots c_{p} }e^{c_{1}}\wedge \cdots \wedge e^{c_{p}}+\mathrm {I}_{b}T^{c}\wedge \mathrm {I}_{ac}\Phi ^{m_{1}\cdots m_{m}},\nonumber \\ \end{aligned}$$
(113)

and replacing it in the commutator Eq. (110), we have that in fact

$$\begin{aligned} \left[ \mathrm {I}_{a},\mathcal {D}_{b}\right] =-T^{c}{}_{ab}\mathrm {I}_{c}\,. \end{aligned}$$
(114)

Regarding the commutator of Eq. (66), we have

$$\begin{aligned} \left[ \mathrm {D},\mathcal {D}_{b}\right]&=\mathrm {D}\mathcal {D} _{b}-\mathcal {D}_{b}\mathrm {D}\,, \end{aligned}$$
(115)
$$\begin{aligned}&=\mathrm {D}\left( \mathrm {I}_{b}\mathrm {D}+\mathrm {DI}_{b}\right) -\left( \mathrm {I}_{b}\mathrm {D}+\mathrm {DI}_{b}\right) \mathrm {D}\,, \end{aligned}$$
(116)
$$\begin{aligned}&=\mathrm {DI}_{b}\mathrm {D}+\mathrm {D}^{2}\mathrm {I}_{b}-\left( \mathrm {I}_{b}\mathrm {D}^{2}+\mathrm {DI}_{b}\mathrm {D}\right) \,, \end{aligned}$$
(117)
$$\begin{aligned}&=\mathrm {D}^{2}\mathrm {I}_{b}-\mathrm {I}_{b}\mathrm {D}^{2}\,. \end{aligned}$$
(118)

The definitions Eqs. (107)–(108) for the commutator and the anticommutator grant that the super Jacobi identity Eq. (67) closes. In fact,

$$\begin{aligned}&\left\{ \mathrm {D},\left[ \mathrm {I}_{b},\mathcal {D}_{a}\right] \right\} +\left[ \mathcal {D}_{a},\left\{ \mathrm {D},\mathrm {I}_{b}\right\} \right] -\left\{ \mathrm {I}_{b},\left[ \mathcal {D}_{a},\mathrm {D}\right] \right\} \nonumber \\&\quad =\mathrm {DI}_{b}\mathcal {D}_{a}-\mathrm {D}\mathcal {D}_{a}\mathrm {I} _{b}+\mathrm {I}_{b}\mathcal {D}_{a}\mathrm {D}-\mathcal {D}_{a}\mathrm {I} _{b}\mathrm {D} \end{aligned}$$
(119)
$$\begin{aligned}&\qquad +\,\mathcal {D}_{a}\mathrm {DI}_{b}+\mathcal {D}_{a}\mathrm {I}_{b}\mathrm {D} -\mathrm {DI}_{b}\mathcal {D}_{a}-\mathrm {I}_{b}\mathrm {D}\mathcal {D}_{a} \end{aligned}$$
(120)
$$\begin{aligned}&\qquad -\,\mathrm {I}_{b}\mathcal {D}_{a}\mathrm {D}+\mathrm {I}_{b}\mathrm {D} \mathcal {D}_{a}-\mathcal {D}_{a}\mathrm {DI}_{b}+\mathrm {D}\mathcal {D} _{a}\mathrm {I}_{b}\,, \end{aligned}$$
(121)
$$\begin{aligned}&\quad =0. \end{aligned}$$
(122)

From here, it is straightforward to obtain Eq. (69).

B Anomalous propagation of amplitude

In this Appendix we derive Eq. (101). Let us start by using Eq. (98) to write

$$\begin{aligned} k^{a}{\mathfrak {D}}_{a}\varphi ^{2}=\frac{1}{p!}C_{AB}\left( k^{a}{\mathfrak {D}}_{a}{\bar{\psi }}_{\left( 0\right) }^{Aa_{1}\cdots a_{p}}\psi _{\left( 0\right) a_{1}\cdots a_{p}}^{B}+{\bar{\psi }}_{\left( 0\right) }^{Aa_{1}\cdots a_{p}}k^{a}{\mathfrak {D}}_{a}\psi _{\left( 0\right) a_{1}\cdots a_{p}}^{B}\right) .\nonumber \\ \end{aligned}$$
(123)

Using Eq. (91), it is possible to prove that

$$\begin{aligned} \frac{1}{p!}e^{a_{1}}\wedge \cdots \wedge e^{a_{p}}k^{a}{\mathfrak {D}}_{a}\psi _{\left( 0\right) a_{1}\cdots a_{p}}^{A}+k^{a}\mathrm {I}_{a}{\mathbb {T}}^{b}\wedge \mathrm {I}_{b}\psi _{\left( 0\right) }^{A}+\frac{1}{2}\psi _{\left( 0\right) }^{A}{\mathfrak {D}}_{a}k^{a}=0. \end{aligned}$$
(124)

Combining both relations, we get

$$\begin{aligned} k^{a}{\mathfrak {D}}_{a}\varphi ^{2}&=-\left( -1\right) ^{\eta _{-}}C_{AB}*\left\{ k^{a}\left[ \mathrm {I}_{a}{\mathbb {T}}^{b}\wedge \mathrm {I}_{b}{\bar{\psi }}_{\left( 0\right) }^{A}\wedge *\psi _{\left( 0\right) }^{B}+{\bar{\psi }}_{\left( 0\right) }^{A}\wedge *\left( \mathrm {I}_{a}{\mathbb {T}}^{b}\wedge \mathrm {I}_{b}\psi _{\left( 0\right) }^{B}\right) \right] \right. \nonumber \\&\quad \left. +{\bar{\psi }}_{\left( 0\right) }^{A}\wedge *\psi _{\left( 0\right) }^{B}{\mathfrak {D}}_{a}k^{a}\right\} \end{aligned}$$
(125)

Replacing here Eq. (98), we get

$$\begin{aligned} {\mathfrak {D}}_{a}J^{a}={\mathbb {T}}_{abc}\Pi ^{ab}J^{c}, \end{aligned}$$
(126)

where \({\mathbb {T}}_{abc}\) are the orthonormal-basis components of the G-torsion, \({\mathbb {T}}_{a} = \frac{1}{2} {\mathbb {T}}_{abc} e^{b} \wedge e^{c}\),

$$\begin{aligned} J^{a}=\varphi ^{2}k^{a}, \end{aligned}$$
(127)

and

$$\begin{aligned} \Pi ^{ab}=\left( -1\right) ^{\eta _{-}}C_{AB}*\left[ \mathrm {I}^{a}{\bar{P}}^{A}\wedge *\mathrm {I}^{b}P^{B}+\mathrm {I}^{b}{\bar{P}}^{A}\wedge *\mathrm {I}^{a}P^{B}\right] . \end{aligned}$$
(128)

Splitting the covariant derivative as in Eq. (36), we find

$$\begin{aligned} {\mathfrak {D}}_{a}J^{a}&=-{\mathbb {D}}^{\ddag }J,\nonumber \\&=-\mathrm {\mathring{D}}^{\ddag }J+\mathrm {I}^{a}{\mathbb {K}}_{ab}J^{b},\nonumber \\&=-\mathrm {d}^{\dag }J+{\mathbb {T}}^{a}{}_{ab}J^{b}. \end{aligned}$$
(129)

This relation lead us to

$$\begin{aligned} \mathrm {d}^{\dag }J={\mathbb {T}}_{abc}\left( \eta ^{ab}-\Pi ^{ab}\right) J^{c}. \end{aligned}$$
(130)

for the anomalous propagation of amplitude when \({\mathbb {T}}^{a}\ne 0\) and Eq. (82).

C Anomalous propagation of polarization

In this Appendix we derive Eq. (103). Replacing Eq. (96) in Eq. (91) we get

$$\begin{aligned} k^{a}{\mathfrak {D}}_{a}P^{A}+\left( \frac{1}{\varphi }k^{a}{\mathfrak {D}}_{a}\varphi +\frac{1}{2}{\mathfrak {D}}_{a}k^{a}\right) P^{A}=0. \end{aligned}$$
(131)

Replacing here Eq. (126) with \(J^{a}=\varphi ^{2}k^{a}\), we have

$$\begin{aligned} \frac{1}{\varphi }k^{a}{\mathfrak {D}}_{a}\varphi +\frac{1}{2}{\mathfrak {D}}_{a}k^{a}=\frac{1}{2\varphi ^{2}}{\mathbb {T}}_{abc}\Pi ^{ab}J^{c}, \end{aligned}$$
(132)

and therefore

$$\begin{aligned} k^{a}{\mathfrak {D}}_{a}P^{A}=-\frac{1}{2}{\mathbb {T}}_{abc}\Pi ^{ab}k^{c}P^{A}. \end{aligned}$$
(133)

From this equation, it is already evident that the orthonormal-basis components of torsion, \({\mathbb {T}}_{abc}\), modify the propagation of the polarization p-form \(P^{A}\). To make this effect more explicit, let us split \({\mathbb {D}}\) (cf. Definition 3.5) in terms of the contorsion and G-contorsion one-forms as

$$\begin{aligned} {\mathfrak {D}}_{a} P^{A} = \mathring{\mathcal {D}}_{a} P^{A} + \mathrm {I}_{a} \left( \frac{1}{2} \kappa ^{mn} \left[ J_{mn} \right] ^{A}{}_{B} + a^{A}{}_{B} \right) \wedge P^{B} + {\mathbb {K}}_{ab} \wedge \mathrm {I}^{b} P^{A}. \end{aligned}$$
(134)

Writing the contorsion \(\kappa ^{mn}\) and G-contorsion \({\mathbb {K}}_{ab}\) one-forms in terms of the torsion and G-torsion as in Eq. (37), and replacing this in Eq. (133), we finally find the general expression given in Eq. (103),

$$\begin{aligned} k^{a}\mathcal {\mathring{D}}_{a}P^{A}&=\frac{1}{2}\left\{ -{\mathbb {T}}_{abc}\Pi ^{ab}P^{A}+\left( {\mathbb {T}}_{bac}+{\mathbb {T}}_{abc}-{\mathbb {T}}_{cab}\right) e^{a}\wedge \mathrm {I}^{b}P^{A}\right. \nonumber \\&\quad \left. -\,\left[ \frac{1}{2}\left( T_{bac}-T_{abc}+T_{cab}\right) \left[ J^{ab}\right] ^{A}{}_{B}+2\mathrm {I}_{c}a^{A}{}_{B}\right] P^{B}\right\} k^{c}, \end{aligned}$$
(135)

from which it is evident that torsion modifies the propagation of polarization along the trajectory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrientos, J., Izaurieta, F., Rodríguez, E. et al. Wave operators, torsion, and Weitzenböck identities. Gen Relativ Gravit 54, 26 (2022). https://doi.org/10.1007/s10714-022-02914-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02914-7

Keywords

Navigation