Skip to main content
Log in

Influence of UV irradiation and subsequent chemical grafting on the surface properties of cellulose

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This work is devoted to the study of surface properties of cellulose before and after a surface modification. Surface modification of polymeric materials was carried out in two steps: (1) activation by UV irradiation at 254 or 365 nm, followed by (2) chemical grafting with alanine, leucine or curcumin. Two types of cellulose materials, regenerated cellulose and cotton, were studied. The structure of cellulose at different stages of modification was examined by available physical and physico-chemical techniques and antibacterial activity of prepared composites was studied too. Antibacterial assays were performed on selected substrates. The results show that the changes in surface properties depend on the wavelength of UV irradiation as well as on the irradiation time. Smaller molecules of grafted substances (alanine and leucine) are bound not only onto the cellulose surface but also into the cellulose pores in contrast with curcumin. Cellulose substrates modified with alanine, leucine or curcumin show antibacterial activity, especially for S. epidermidis, also slightly against E. coli. The obtained results indicated the strongest antibacterial effect for cellulose grafted with curcumin, where CFU reduced by almost 58% for E. coli and 55% for S. epidermidis in comparison with pristine, alanine and leucine have only smaller effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso D, Gimeno M, Olayo R, Vázquez-Torres H, Sepúlveda-Sánchez JD, Shirai K (2009) Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr Polym 77(3):536–543

    Article  CAS  Google Scholar 

  • Andrade JD (1985) Surface and interfacial aspects of biomedical polymers i: surface chemistry and physics. Plenum Press, New York

    Book  Google Scholar 

  • Bačáková L, Švorčík V (2008) Cell colonization control by physical and chemical modification of materials. In: Kimura D (ed) Cell growth processes: new research. Nova Science Publishers, Inc. New York

  • Benkocká M, Knapová T, Braborec J, Matoušek J, Černá H, Londesborough MGS, Švorčík V, Kolská Z (2015) Chemicaly activated and grafted substrates and their analyses. Chem Listy 109(12):960–964

    Google Scholar 

  • Benkocká M, Lupínková S, Knapová T, Kolářová K, Matoušek J, Slepička P, Kolská Z (2019) Antimicrobial and photophysical properties of chemically grafted ultra-high-molecular-weight polyethylene. Mater Sci Eng C Mater Biol Appl 96:479–486

    Article  PubMed  Google Scholar 

  • Borcia C, Borcia G, Dumitrascu N (2011) Surface treatment of polymer by plasma and UV radiation. Rom J Phys 56:224–232

    CAS  Google Scholar 

  • Chen ZJ, Lu X, Chan CM, Mi YL (2006) Manipulating the surface properties of polyacrylamide with nitrogen plasma. Eur Polym J 42(11):2914–2920

    Article  CAS  Google Scholar 

  • Chen LC, Chiang WD, Chen WC, Chen HH, Huang YW, Chen WJ, Lin SB (2012) Influence of alanine uptake on Staphylococcus aureus surface charge and its susceptibility to two cationic antibacterial agents, nisin and low molecular weight chitosan. Food Chem 135(4):2397–2403

    Article  CAS  PubMed  Google Scholar 

  • Czernicka L, Grzegorczyk A, Marzec Z, Antosiewicz B, Malm A, Kukula-Koch W (2019) Antimicrobial potential of single metabolites of curcuma longa assessed in the total extract by thin-layer chromatography-based bioautography and image analysis. Int J Mol Sci 20(4):898

    Article  CAS  PubMed Central  Google Scholar 

  • Fan H, Li G, Yang F, Yang L, Zhang S (2011) Photodegradation of cellulose under UV light catalysed by TiO2. J Chem Technol Biotechnol 86(8):1107–1112

    Article  CAS  Google Scholar 

  • Fischbach C, Tessmar J, Lucke A, Schnell E, Schmeer G, Blunk T, Göpferich A (2001) Does UV irradiation affect polymer properties relevant to tissue engineering? Surf Sci 491(3):333–345

    Article  CAS  Google Scholar 

  • Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32(7):698–725

    Article  CAS  Google Scholar 

  • Guruvenket S, Rao GM, Komath M, Raichur AM (2004) Plasma surface modification of polystyrene and polyethylene. Appl Surf Sci 236:278–284

    Article  CAS  Google Scholar 

  • Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Methods Phys Res B 208:281–286

    Article  CAS  Google Scholar 

  • Heitz J, Švorčík V, Bačáková L et al (2003) Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere: cell adhesion on polytetrafluoroethylene. J Biomed Mater Res 67A:130–137

    Article  CAS  Google Scholar 

  • Izui S, Sekine S, Maeda K, Kuboniwa M, Takada A, Amano A, Nagata H (2016) Antibacterial activity of curcumin against periodontopathic bacteria. J Periodontol 87(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Modi NH, Panda D, Roy N (2010) Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ—a structural insight to unveil antibacterial activity of curcumin. Eur J Med Chem 45(9):4209–4214

    Article  CAS  PubMed  Google Scholar 

  • Knapová T, Matoušek J, Fajstavr D, Švorčík V, Kolská Z (2020) Antimicrobial effect of polymers grafted with cinnamaldehyde. Mater Lett 277:128274

    Article  Google Scholar 

  • Kolářová K, Vosmanská V, Rimpelová S, Švorčík V (2013) Effect of plasma treatment on cellulose fiber. Cellulose 20(2):953–961

    Article  Google Scholar 

  • Kolská Z, Řezníčková A, Nagyová M, Slepičková Kasálková N, Sajdl P, Slepička P, Švorčík V (2014) Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym Degrad Stabil 101:1–9

    Article  Google Scholar 

  • Kolská Z, Polanský R, Prosr P, Zemanová M, Ryšánek P, Slepička P, Švorčík V (2018) Properties of polyamide nanofibers treated by UV-A radiation. Mater Lett 214:264–267

    Article  Google Scholar 

  • Kotál V, Švorčík V, Slepička P, Sajdl P, Bláhová O, Šutta P, Hnatowicz V (2007) Gold coating of poly(ethylene terephthalate) modified by argo plasma. Plasma Process Polym 4:69–76

    Article  Google Scholar 

  • Kovač A, Konc J, Vehar B, Bostock JM, Chopra I, Janežič D, Gobec S (2008) Discovery of new inhibitors of d-Alanine:d-Alanine ligase by structure-based virtual screening. J Med Chem 51(23):7442–7448

    Article  PubMed  Google Scholar 

  • Kraus E, Orf L, Baudrit B, Heidemeyer P, Bastian M, Bonenberger R, Starostina I, Stoyanov O (2016) Analysis of the low-pressure plasma pretreated polymer surface in terms of acid-base approach. Appl Surf Sci 371(15):365–375

    Article  CAS  Google Scholar 

  • Lupínková S, Benkocká M, Braborec J, Matoušek J, Kolářová K, Londesborough MGS, Kolská Z (2016) Analyses of chemically modified polymer surfaces. Czech Chem Soc Symp Ser 14:19–22

    Google Scholar 

  • Lupínková S, Výborný K, Benkocká M, Kolská Z, Slepičková Kasálková N, Švorčík V (2014) Analysis of polymer surfaces of activated plasma and subsequently grafted vicinal compounds. Chem Listy 108:237–240

    Google Scholar 

  • Lupínková S, Kaimlová M, Kormunda M, Kolská Z (2021) Chitosan-capped sulfur microparticles grafted on UV-treated PET surface. Surf Interface Anal 53:108–117

    Article  Google Scholar 

  • Marcone GL, Binda E, Rosini E et al (2019) Antibacterial properties of D-amino acid oxidase: impact on the food industry. Front Microbiol 10:2786

    Article  PubMed  PubMed Central  Google Scholar 

  • Martelli G, Giacomini D (2018) Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur J Med Chem 158:91–105

    Article  CAS  PubMed  Google Scholar 

  • Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, Kwon DY (2013) Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 20(8–9):714–718

    Article  CAS  PubMed  Google Scholar 

  • Nechifor M (2016) Factors influencing the photochemical behavior of multicomponent polymeric materials. In: Rosu D and Visakh PM (eds.) Photochemical behavior of multicomponent polymeric-based materials. Springer International Publishing, Switzerland

  • Nelson DL, Cox MM (2005) Lehninger principles of biochemistry. Worth Publishers, New York

    Google Scholar 

  • Neubertová V, Knapová T, Kormunda M, Kolská Z (2018) Modification of polymer foils by UV radiation and chemical grafting. Chem Listy 112(5):224–328

    Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  PubMed  Google Scholar 

  • Novotna K, Havelka P, Sopuch T, Kolarova K, Vosmanska V, Lis V, Svorcik V, Bacakova L (2013) Cellulose-based materials as scaffolds for tissue engineering. Cellulose 20(5):2263–2278

    Article  CAS  Google Scholar 

  • Rahmani S, Mohammadi Z, Amini M, Isaei E, Taheritarigh S, Rafiee Tehrani N, Rafiee Tehrani M (2016) Methylated 4-N, N dimethyl aminobenzyl N, O carboxymethyl chitosan as a new chitosan derivative: synthesis, characterization, cytotoxicity and antibacterial activity. Carbohydr Polym 149:131–139

    Article  CAS  PubMed  Google Scholar 

  • Rossiter SE, Fletcher MH, Wuest WM (2017) Natural products as platforms to overcome antibiotic resistance. Chem Rev 117(19):12415–12474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarra-Bournet C, Turgeon S, Mantovani D, Laroche G (2006) Comparison of atmospheric-pressure plasma versus low-pressure RF plasma for surface functionalization of PTFE for biomedical applications. Plasma Process Polym 3(6–7):506–515

    Article  CAS  Google Scholar 

  • Shin J, Xiaojing L, Chikthimmah N, Lee YS (2016) Polymer surface modification using UV treatment for attachment of natamycin and the potential applications for conventional food cling wrap (LDPE). Appl Surf Sci 386(15):276–284

    Article  CAS  Google Scholar 

  • Silovská T, Matoušek J, Fajstavr D, Švorčík V, Kolská Z (2020) Antimicrobial effect of polymers grafted with cinnamaldehyde. Mater Lett 277:128274

    Article  Google Scholar 

  • Silva LN, Zimmer KR, Macedo AJ, Trentin DS (2016) Plant natural products targeting bacterial virulence factors. Chem Rev 116(16):9162–9236

    Article  CAS  PubMed  Google Scholar 

  • Slepička P, Trostová S, Slepičková Kasálková N, Kolská Z, Sajdl P, Švorčík V (2011) Surface modification of biopolymers by argon plasma and thermal treatment. Plasma Process Polym 9(2):197–206

    Article  Google Scholar 

  • Slepickova Kasalkova N, Žáková P, Stibor I, Slepička P, Kolská Z, Karpíšková J, Švorčík V (2019) Carbon nanostructures grafted biopolymers for medical applications. Mater Technol 34(7):376–385

    Article  CAS  Google Scholar 

  • Švorčík V, Kotál V, Slepička P, Bláhová O, Špírková M, Sajdl P, Hnatowicz V (2006) Mofificatiion of surface properties of polyethylene by Ar plasma discharge. Nucl Instrum Methods Phys Res B 244(2):365–372

    Article  Google Scholar 

  • Švorčík V, Ročková K, Ratajová E, Heitz J, Huber N, Bäuerle D, Bačáková L, Dvořánková B, Hnatowicz V (2004) Cell proliferation on UV-excimer lamp modified and grafted polytetrafluoroethylene. Nucl Instrum Methods Phys Res B 217:307–313

    Article  Google Scholar 

  • Taniguchi M, Ochiai A, Takahashi K, Nakamichi S, Nomoto T, Saitoh E, Kato T, Tanaka T (2016) Effect of alanine, leucine, and arginine substitution on antimicrobial activity against candida albicans and action mechanism of a cationic octadecapeptide derived from α-amylase of rice. PeptideScience 106(2):219–229

    CAS  Google Scholar 

  • Teow SY, Liew K, Ali SA, Khoo ASB., Peh SC (2016) Antibacterial action of Curcumin against Staphylococcus aureus: a brief review. J Trop Med 2016: Article No. UNSP 2853045

  • Vosmanská V, Kolářová K, Rimpelová S, Švorčík V (2014) Surface modification of oxidized cellulose haemostat by argon plasma treatment. Cellulose 21(4):2445–2456

    Article  Google Scholar 

  • Vosmanská V, Kolářová K, Rimpelová S, Kolská Z, Švorčík V (2015) Antibacterial wound dressing: plasma treatment effect on chitosan impregnation and in situ synthesis of silver chloride on cellulose surface. RSC Adv 5(23):17690–17699

    Article  Google Scholar 

  • Vaughn AR, Haas KN, Burney W, Andersen E, Clark AK, Crawford R, Sivamani RK (2017) Potential role of Curcumin against biofilm-producing organisms on the skin: a review. Phytother Res 31(12):1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Vosmanská V, Barb RA, Kolářová K, Rimpelová S, Heitz J, Švorčík V (2016) Effect of VUV-excimer lamp treatment on cellulose fiber. Int J Polym Anal Char 21(4):337–347

    Article  Google Scholar 

  • Wang H, Brown HR (2004) UV grafting of methacrylic acid and acrylic acid on high-density polyethylene in different solvents and the wettability of grafted high-density polyethylene. II. Wettability. J Polym Sci a Polym Chem 42(2):263–270

    Article  CAS  Google Scholar 

  • Yousaf A, Farrukh A, Oluz Z, Tuncel E, Duran H, Dogan AY, Tekinay T, Rehman H, Yameenm B (2014) UV-light assisted single step route to functional PEEK surfaces. React Funct Polym 83:70–75

    Article  CAS  Google Scholar 

  • Žáková P, Slepičková Kasálková N, Slepička P, Kolská Z, Karpíšková J, Stibor I, Švorčík V (2017) Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles. Appl Surf Sci 422:809–816

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the GACR Project No. GACR 20-01641S, by the Grant Agency of Health Ministry No. NU20-08-00208, by ERDF/ESF Project UniQSurf—Centre of biointerfaces and hybrid functional materials (No. CZ.02.1.01/0.0/0.0/17_048/0007411) and by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2018124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktorie Neubertová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neubertová, V., Slepičková Kasálková, N., Vokatá, B. et al. Influence of UV irradiation and subsequent chemical grafting on the surface properties of cellulose. Cellulose 29, 1405–1418 (2022). https://doi.org/10.1007/s10570-022-04426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04426-8

Keywords

Navigation