Skip to main content
Log in

Pancreatic cancer: branched-chain amino acids as putative key metabolic regulators?

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Branched-chain amino acids (BCAA) are essential amino acids utilized in anabolic and catabolic metabolism. While extensively studied in obesity and diabetes, recent evidence suggests an important role for BCAA metabolism in cancer. Elevated plasma levels of BCAA are associated with an increased risk of developing pancreatic cancer, namely pancreatic ductal adenocarcinoma (PDAC), a tumor with one of the highest 1-year mortality rates. The dreadful prognosis for PDAC patients could be attributable also to the early and frequent development of cancer cachexia, a fatal host metabolic reprogramming leading to muscle and adipose wasting. We propose that BCAA dysmetabolism is a unifying component of several pathological conditions, i.e., obesity, insulin resistance, and PDAC. These conditions are mutually dependent since PDAC ranks among cancers tightly associated with obesity and insulin resistance. It is also well-established that PDAC itself can trigger insulin resistance and new-onset diabetes. However, the exact link between BCAA metabolism, development of PDAC, and tissue wasting is still unclear. Although tissue-specific intracellular and systemic metabolism of BCAA is being intensively studied, unresolved questions related to PDAC and cancer cachexia remain, namely, whether elevated circulating BCAA contribute to PDAC etiology, what is the biological background of BCAA elevation, and what is the role of adipose tissue relative to BCAA metabolism during cancer cachexia. To cover those issues, we provide our view on BCAA metabolism at the intracellular, tissue, and whole-body level, with special emphasis on different metabolic links to BCAA intermediates and the role of insulin in substrate handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Pearson-Stuttard, J., Bennett, J., Cheng, Y. J., Vamos, E. P., Cross, A. J., Ezzati, M., et al. (2021). Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: An epidemiological analysis of linked primary care records. The Lancet Diabetes & Endocrinology, 9(3), 165–173. https://doi.org/10.1016/s2213-8587(20)30431-9

    Article  Google Scholar 

  2. Huxley, R., Ansary-Moghaddam, A., Berrington De González, A., Barzi, F., & Woodward, M. (2005). Type-II diabetes and pancreatic cancer: A meta-analysis of 36 studies. British Journal of Cancer, 92(11), 2076–2083. https://doi.org/10.1038/sj.bjc.6602619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Safiri, S., Sepanlou, S. G., Ikuta, K. S., Bisignano, C., Salimzadeh, H., Delavari, A., et al. (2019). The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology & Hepatology, 4(12), 913–933. https://doi.org/10.1016/s2468-1253(19)30345-0

    Article  Google Scholar 

  4. Luo, G., Fan, Z., Gong, Y., Jin, K., Yang, C., Cheng, H., et al. (2019). Characteristics and outcomes of pancreatic cancer by histological subtypes. Pancreas, 48(6), 817–822. https://doi.org/10.1097/mpa.0000000000001338

    Article  PubMed  Google Scholar 

  5. Grant, T. J., Hua, K., & Singh, A. (2016). Molecular pathogenesis of pancreatic cancer. In (pp. 241–275): Elsevier.

  6. Basturk, O., Hong, S.-M., Wood, L. D., Adsay, N. V., Albores-Saavedra, J., Biankin, A. V., et al. (2015). A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. American Journal of Surgical Pathology, 39(12), 1730–1741. https://doi.org/10.1097/pas.0000000000000533

    Article  Google Scholar 

  7. Murtaugh, L. C. (2014). Pathogenesis of pancreatic cancer. Toxicologic Pathology, 42(1), 217–228. https://doi.org/10.1177/0192623313508250

    Article  CAS  PubMed  Google Scholar 

  8. Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467(7319), 1114–1117. https://doi.org/10.1038/nature09515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ariston Gabriel, A. N., Jiao, Q., Yvette, U., Yang, X., Al-Ameri, S. A., Du, L., et al. (2020). Differences between KC and KPC pancreatic ductal adenocarcinoma mice models, in terms of their modeling biology and their clinical relevance. Pancreatology, 20(1), 79–88. https://doi.org/10.1016/j.pan.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  10. Wang, H., Liu, J., Xia, G., Lei, S., Huang, X., & Huang, X. (2020). Survival of pancreatic cancer patients is negatively correlated with age at diagnosis: A population-based retrospective study. Scientific Reports, 10(1), https://doi.org/10.1038/s41598–020–64068–3

  11. Hue, J. J., Sugumar, K., Kyasaram, R. K., Shanahan, J., Lyons, J., Ocuin, L. M., et al. (2021). Weight loss as an untapped early detection marker in pancreatic and periampullary cancer. Annals of Surgical Oncology, 28(11), 6283–6292. https://doi.org/10.1245/s10434-021-09861-8

    Article  PubMed  Google Scholar 

  12. Vanhoutte, G., Van De Wiel, M., Wouters, K., Sels, M., Bartolomeeussen, L., De Keersmaecker, S., et al. (2016). Cachexia in cancer: What is in the definition? BMJ Open Gastroenterology, 3(1), e000097. https://doi.org/10.1136/bmjgast-2016-000097

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fearon, K., Strasser, F., Anker, S. D., Bosaeus, I., Bruera, E., Fainsinger, R. L., et al. (2011). Definition and classification of cancer cachexia: An international consensus. The Lancet Oncology (Vol. 12, pp. 489–495): Elsevier.

  14. Ali, R., Baracos, V. E., Sawyer, M. B., Bianchi, L., Roberts, S., Assenat, E., et al. (2016). Lean body mass as an independent determinant of dose-limiting toxicity and neuropathy in patients with colon cancer treated with FOLFOX regimens. Cancer Medicine (Vol. 5, pp. 607–616): John Wiley & Sons, Ltd.

  15. Kordes, M., Larsson, L., Engstrand, L., & Löhr, J. M. (2021). Pancreatic cancer cachexia: Three dimensions of a complex syndrome. British Journal of Cancer, 124(10), 1623–1636. https://doi.org/10.1038/s41416-021-01301-4

    Article  PubMed  Google Scholar 

  16. Mayers, J. R., Wu, C., Clish, C. B., Kraft, P., Torrence, M. E., Fiske, B. P., et al. (2014). Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nature Medicine 2014 20:10 (Vol. 20, pp. 1193–1198): Nature Publishing Group.

  17. García-Jiménez, C., Gutiérrez-Salmerón, M., Chocarro-Calvo, A., García-Martinez, J. M., Castaño, A., & De la Vieja, A. (2016). From obesity to diabetes and cancer: Epidemiological links and role of therapies. British Journal of Cancer 2016 114:7 (Vol. 114, pp. 716–722): Nature Publishing Group.

  18. Wolpin, B. M., Bao, Y., Qian, Z. R., Wu, C., Kraft, P., Ogino, S., et al. (2013). Hyperglycemia, insulin resistance, impaired pancreatic β-cell function, and risk of pancreatic cancer. JNCI: Journal of the National Cancer Institute (Vol. 105, pp. 1027–1035): Oxford Academic.

  19. Herman, M. A., She, P., Peroni, O. D., Lynch, C. J., & Kahn, B. B. (2010). Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. Journal of Biological Chemistry, 285(15), 11348–11356. https://doi.org/10.1074/jbc.m109.075184

    Article  CAS  Google Scholar 

  20. Bianchini, F., Kaaks, R., & Vainio, H. (2002). Overweight, obesity, and cancer risk. The Lancet Oncology, 3(9), 565–574. https://doi.org/10.1016/S1470-2045(02)00849-5

    Article  PubMed  Google Scholar 

  21. De Gonzalez, A. B., Sweetland, S., & Spencer, E. (2003). A meta-analysis of obesity and the risk of pancreatic cancer. British Journal of Cancer, 89(3), 519–523. https://doi.org/10.1038/sj.bjc.6601140

    Article  PubMed Central  Google Scholar 

  22. Lengyel, E., Makowski, L., Digiovanni, J., & Kolonin, M. G. (2018). Cancer as a matter of fat: The crosstalk between adipose tissue and tumors. Trends in Cancer, 4(5), 374–384. https://doi.org/10.1016/j.trecan.2018.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rupert, J. E., Narasimhan, A., Jengelley, D. H. A., Jiang, Y., Liu, J., Au, E., et al. (2021). Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. Journal of Experimental Medicine (Vol. 218): The Rockefeller University Press.

  24. Anthony, J. C., Yoshizawa, F., Anthony, T. G., Vary, T. C., Jefferson, L. S., & Kimball, S. R. (2000). Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. The Journal of Nutrition, 130(10), 2413–2419. https://doi.org/10.1093/jn/130.10.2413

    Article  CAS  PubMed  Google Scholar 

  25. Jang, C., Oh, S. F., Wada, S., Rowe, G. C., Liu, L., Chan, M. C., et al. (2016). A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nature Medicine 2016 22:4 (Vol. 22, pp. 421–426): Nature Publishing Group.

  26. Violante, S., Ijlst, L., Brinke, H. T., Almeida, I. T., Wanders, R. J. A., Ventura, F. V., et al. (2013). Carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase are involved in the mitochondrial synthesis and export of acylcarnitines. The FASEB Journal, 27(5), 2039–2044. https://doi.org/10.1096/fj.12-216689

    Article  CAS  PubMed  Google Scholar 

  27. Juraszek, B., & Nałęcz, K. A. (2019). SLC22A5 (OCTN2) Carnitine transporter—indispensable for cell metabolism, a Jekyll and Hyde of human cancer. Molecules, 25(1), 14. https://doi.org/10.3390/molecules25010014

    Article  CAS  PubMed Central  Google Scholar 

  28. Neinast, M. D., Jang, C., Hui, S., Murashige, D. S., Chu, Q., Morscher, R. J., et al. (2019). Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metabolism (Vol. 29, pp. 417–429.e414): Elsevier.

  29. Najumudeen, A. K., Ceteci, F., Fey, S. K., Hamm, G., Steven, R. T., Hall, H., et al. (2021). The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nature Genetics, 53(1), 16–26. https://doi.org/10.1038/s41588-020-00753-3

    Article  CAS  PubMed  Google Scholar 

  30. Bodoy, S., Fotiadis, D., Stoeger, C., Kanai, Y., & Palacín, M. (2013). The small SLC43 family: Facilitator system l amino acid transporters and the orphan EEG1. Molecular Aspects of Medicine, 34(2–3), 638–645. https://doi.org/10.1016/j.mam.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  31. Feng, M., Xiong, G., Cao, Z., Yang, G., Zheng, S., Qiu, J., et al. (2018). LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer. Journal of Experimental & Clinical Cancer Research, 37(1), https://doi.org/10.1186/s13046–018–0947–4

  32. Wolfe, R. R. (2017). Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? Journal of the International Society of Sports Nutrition, 14(1), https://doi.org/10.1186/s12970–017–0184–9

  33. Walejko, J. M., Christopher, B. A., Crown, S. B., Zhang, G. F., Pickar-Oliver, A., Yoneshiro, T., et al. (2021). Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart. Nature Communications (Vol. 12): Nature Research.

  34. Mayers, J. R., Torrence, M. E., Danai, L. V., Papagiannakopoulos, T., Davidson, S. M., Bauer, M. R., et al. (2016). Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science, 353(6304), 1161–1165. https://doi.org/10.1126/science.aaf5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoneshiro, T., Wang, Q., Tajima, K., Matsushita, M., Maki, H., Igarashi, K., et al. (2019). BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 2019 572:7771 (Vol. 572, pp. 614–619): Nature Publishing Group.

  36. Silva, L. S., Poschet, G., Nonnenmacher, Y., Becker, H. M., Sapcariu, S., Gaupel, A. C., et al. (2017). Branched‐chain ketoacids secreted by glioblastoma cells via MCT 1 modulate macrophage phenotype. EMBO reports, 18(12), 2172–2185. https://doi.org/10.15252/embr.201744154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whitehead, A., Krause, F. N., Moran, A., MacCannell, A. D. V., Scragg, J. L., McNally, B. D., et al. (2021). Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nature Communications 2021 12:1 (Vol. 12, pp. 1–21): Nature Publishing Group.

  38. Zhu, Z., Achreja, A., Meurs, N., Animasahun, O., Owen, S., Mittal, A., et al. (2020). Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nature Metabolism 2020 2:8 (Vol. 2, pp. 775–792): Nature Publishing Group.

  39. Gu, Z., Liu, Y., Cai, F., Patrick, M., Zmajkovic, J., Cao, H., et al. (2019). Loss of EZH2 Reprograms BCAA metabolism to drive leukemic transformation. Cancer Discovery, 9(9), 1228–1247. https://doi.org/10.1158/2159-8290.Cd-19-0152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hattori, A., Tsunoda, M., Konuma, T., Kobayashi, M., Nagy, T., Glushka, J., et al. (2017). Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature, 545(7655), 500–504. https://doi.org/10.1038/nature22314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adeva-Andany, M. M., López-Maside, L., Donapetry-García, C., Fernández-Fernández, C., & Sixto-Leal, C. (2017). Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids, 49(6), 1005–1028. https://doi.org/10.1007/s00726-017-2412-7

    Article  CAS  PubMed  Google Scholar 

  42. Lu, G., Sun, H., She, P., Youn, J.-Y., Warburton, S., Ping, P., et al. (2009). Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. Journal of Clinical Investigation, 119(6), 1678–1687. https://doi.org/10.1172/jci38151

    Article  CAS  Google Scholar 

  43. Green, C. R., Wallace, M., Divakaruni, A. S., Phillips, S. A., Murphy, A. N., Ciaraldi, T. P., et al. (2016). Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nature Chemical Biology, 12(1), 15–21. https://doi.org/10.1038/nchembio.1961

    Article  CAS  PubMed  Google Scholar 

  44. Lee, J. H., Cho, Y.-R., Kim, J. H., Kim, J., Nam, H. Y., Kim, S. W., et al. (2019). Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism. Experimental & Molecular Medicine, 51(11), 1–11. https://doi.org/10.1038/s12276-019-0350-z

    Article  CAS  Google Scholar 

  45. Nilsen, M. S., Jersin, R. A., Ulvik, A., Madsen, A., McCann, A., Svensson, P. A., et al. (2020). 3-hydroxyisobutyrate, a strong marker of insulin resistance in type 2 diabetes and obesity that modulates white and brown adipocyte metabolism. Diabetes, 69(9), 1903–1916. https://doi.org/10.2337/db19-1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosenthal, J., Angel, A., & Farkas, J. (1974). Metabolic fate of leucine: A significant sterol precursor in adipose tissue and muscle. American Journal of Physiology, 226(2), 411–418. https://doi.org/10.1152/ajplegacy.1974.226.2.411

    Article  CAS  Google Scholar 

  47. Estrada-Alcalde, I., Tenorio-Guzman, M. R., Tovar, A. R., Salinas-Rubio, D., Torre-Villalvazo, I., Torres, N., et al. (2017). Metabolic fate of branched-chain amino acids during adipogenesis, in adipocytes from obese mice and C2C12 myotubes. Journal of Cellular Biochemistry, 118(4), 808–818. https://doi.org/10.1002/jcb.25755

    Article  CAS  PubMed  Google Scholar 

  48. Carrer, A., Trefely, S., Zhao, S., Campbell, S. L., Norgard, R. J., Schultz, K. C., et al. (2019). Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discovery, 9(3), 416–435. https://doi.org/10.1158/2159-8290.Cd-18-0567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. She, P., Olson, K. C., Kadota, Y., Inukai, A., Shimomura, Y., Hoppel, C. L., et al. (2013). Leucine and protein metabolism in obese Zucker rats. PLoS One (Vol. 8, pp. e59443): Public Library of Science.

  50. Noland, R. C., Koves, T. R., Seiler, S. E., Lum, H., Lust, R. M., Ilkayeva, O., et al. (2009). Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. Journal of Biological Chemistry, 284(34), 22840–22852. https://doi.org/10.1074/jbc.M109.032888

    Article  CAS  Google Scholar 

  51. Muoio, D. M., Noland, R. C., Kovalik, J. P., Seiler, S. E., Davies, M. N., DeBalsi, K. L., et al. (2012). Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metabolism, 15(5), 764–777. https://doi.org/10.1016/j.cmet.2012.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Allman, B. R., Spray, B. J., Mercer, K. E., Andres, A., & Børsheim, E. (2021). Markers of branched-chain amino acid catabolism are not affected by exercise training in pregnant women with obesity. Journal of Applied Physiology, 130(3), 651–659. https://doi.org/10.1152/japplphysiol.00673.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Violante, S., Ijlst, L., Ruiter, J., Koster, J., van Lenthe, H., Duran, M., et al. (2013). Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (Vol. 1832, pp. 773–779): Elsevier.

  54. Seiler, S. E., Martin, O. J., Noland, R. C., Slentz, D. H., DeBalsi, K. L., Ilkayeva, O. R., et al. (2014). Obesity and lipid stress inhibit carnitine acetyltransferase activity. Journal of Lipid Research (Vol. 55, pp. 635–644): Elsevier.

  55. Wallace, M., Green, C. R., Roberts, L. S., Lee, Y. M., McCarville, J. L., Sanchez-Gurmaches, J., et al. (2018). Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nature Chemical Biology 2018 14:11 (Vol. 14, pp. 1021–1031): Nature Publishing Group.

  56. Li, J.-T., Yin, M., Wang, D., Wang, J., Lei, M.-Z., Zhang, Y., et al. (2020). BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma. Nature Cell Biology 2020 22:2 (Vol. 22, pp. 167–174): Nature Publishing Group.

  57. Wang, K., Zhang, Z., Tsai, H.-i., Liu, Y., Gao, J., Wang, M., et al. (2020). Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells. Cell Death & Differentiation 2020 28:4 (Vol. 28, pp. 1222–1236): Nature Publishing Group.

  58. Carrer, A., Trefely, S., Zhao, S., Campbell, S. L., Norgard, R. J., Schultz, K. C., et al. (2019). Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discovery, 9(3), 416–435. https://doi.org/10.1158/2159-8290.cd-18-0567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sherman, M. H., Yu, R. T., Tseng, T. W., Sousa, C. M., Liu, S., Truitt, M. L., et al. (2017). Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proceedings of the National Academy of Sciences (Vol. 114, pp. 1129–1134): National Academy of Sciences.

  60. Chellappa, S., Hugenschmidt, H., Hagness, M., Line, P. D., Labori, K. J., Wiedswang, G., et al. (2016). Regulatory T cells that co-express RORγt and FOXP3 are pro-inflammatory and immunosuppressive and expand in human pancreatic cancer. OncoImmunology, 5(4), e1102828. https://doi.org/10.1080/2162402x.2015.1102828

    Article  PubMed  Google Scholar 

  61. Ikeda, K., Kinoshita, M., Kayama, H., Nagamori, S., Kongpracha, P., Umemoto, E., et al. (2017). Slc3a2 Mediates branched-chain amino-acid-dependent maintenance of regulatory T cells. Cell Reports, 21(7), 1824–1838. https://doi.org/10.1016/j.celrep.2017.10.082

    Article  CAS  PubMed  Google Scholar 

  62. Wandmacher, A. M., Mehdorn, A.-S., & Sebens, S. (2021). The heterogeneity of the tumor microenvironment as essential determinant of development, progression and therapy response of pancreatic cancer. Cancers, 13(19), 4932. https://doi.org/10.3390/cancers13194932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lei, M.-Z., Li, X.-X., Zhang, Y., Li, J.-T., Zhang, F., Wang, Y.-P., et al. (2020). Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduction and Targeted Therapy 2020 5:1 (Vol. 5, pp. 1–9): Nature Publishing Group.

  64. Dey, P., Baddour, J., Muller, F., Wu, C. C., Wang, H., Liao, W.-T., et al. (2017). Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature, 542(7639), 119–123. https://doi.org/10.1038/nature21052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Parker, S. J., Amendola, C. R., Hollinshead, K. E. R., Yu, Q., Yamamoto, K., Encarnación-Rosado, J., et al. (2020). Selective alanine transporter utilization creates a targetable metabolic niche in pancreatic cancer. Cancer Discovery, 10(7), 1018–1037. https://doi.org/10.1158/2159-8290.cd-19-0959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, B., Chen, Y., Shi, X., Zhou, M., Bao, L., Hatanpaa, K. J., et al. (2021). Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma. Cellular and Molecular Life Sciences, 78(1), 195–206. https://doi.org/10.1007/s00018-020-03483-1

    Article  CAS  PubMed  Google Scholar 

  67. Suh, E. H., Hackett, E. P., Wynn, R. M., Chuang, D. T., Zhang, B., Luo, W., et al. (2019). In vivo assessment of increased oxidation of branched-chain amino acids in glioblastoma. Science and Reports, 9(1), 340. https://doi.org/10.1038/s41598-018-37390-0

    Article  CAS  Google Scholar 

  68. Vellai, T. (2021). How the amino acid leucine activates the key cell-growth regulator mTOR. Nature 2021 596:7871 (Vol. 596, pp. 192–194): Nature Publishing Group.

  69. Blomstrand, E., Eliasson, J., Karlsson, H. K. R., & Köhnke, R. (2006). Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. The Journal of Nutrition, 136(1), 269S-273S. https://doi.org/10.1093/jn/136.1.269s

    Article  CAS  PubMed  Google Scholar 

  70. Wolfe, R. R. (2002). Regulation of muscle protein by amino acids. The Journal of Nutrition, 132(10), 3219S-3224S. https://doi.org/10.1093/jn/131.10.3219s

    Article  CAS  PubMed  Google Scholar 

  71. Shao, D., Villet, O., Zhang, Z., Choi, S. W., Yan, J., Ritterhoff, J., et al. (2018). Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nature Communications, 9(1), https://doi.org/10.1038/s41467–018–05362–7

  72. Zhang, Y.-K., Qu, Y.-Y., Lin, Y., Wu, X.-H., Chen, H.-Z., Wang, X., et al. (2017). Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nature Communications 2017 8:1 (Vol. 8, pp. 1–16): Nature Publishing Group.

  73. Ericksen, R. E., Lim, S. L., McDonnell, E., Shuen, W. H., Vadiveloo, M., White, P. J., et al. (2019). Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression. Cell Metabolism, 29(5), 1151-1165.e1156. https://doi.org/10.1016/j.cmet.2018.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qu, Y. Y., Zhao, R., Zhang, H. L., Zhou, Q., Xu, F. J., Zhang, X., et al. (2020). Inactivation of the AMPK-GATA3-ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Cancer Research, 80(2), 319–333. https://doi.org/10.1158/0008-5472.Can-19-1023

    Article  CAS  PubMed  Google Scholar 

  75. Luo, L., Sun, W., Zhu, W., Li, S., Zhang, W., Xu, X., et al. (2021). BCAT1 decreases the sensitivity of cancer cells to cisplatin by regulating mTOR-mediated autophagy via branched-chain amino acid metabolism. Cell Death & Disease 2021 12:2 (Vol. 12, pp. 1–13): Nature Publishing Group.

  76. Guo, Y., Zhu, H., Weng, M., Zhang, H., Wang, C., & Sun, L. (2020). CC-223, NSC781406, and BGT226 exerts a cytotoxic effect against pancreatic cancer cells via mTOR signaling. Frontiers in Pharmacology (Vol. 0, pp. 1703): Frontiers.

  77. Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., et al. (2018). Oncogenic signaling pathways in the Cancer Genome Atlas. Cell, 173(2), 321-337.e310. https://doi.org/10.1016/j.cell.2018.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Palm, W., Park, Y., Wright, K., Pavlova, N. N., Tuveson, D. A., & Thompson, C. B. (2015). The Utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell (Vol. 162, pp. 259–270): Elsevier.

  79. Nofal, M., Zhang, K., Han, S., & Rabinowitz, J. D. (2017). mTOR inhibition restores amino acid balance in cells dependent on catabolism of extracellular protein. Molecular Cell, 67(6), 936-946.e935. https://doi.org/10.1016/j.molcel.2017.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kamphorst, J. J., Nofal, M., Commisso, C., Hackett, S. R., Lu, W., Grabocka, E., et al. (2015). Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Research (Vol. 75, pp. 544–553): American Association for Cancer Research.

  81. Gojda, J., Straková, R., Plíhalová, A., Tůma, P., Potočková, J., Polák, J., et al. (2017). Increased incretin but not insulin response after oral versus intravenous branched chain amino acids. Annals of Nutrition and Metabolism (Vol. 70, pp. 293–302): Karger Publishers.

  82. Wahren, J., Felig, P., & Hagenfeldt, L. (1976). Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. Journal of Clinical Investigation (Vol. 57, pp. 987): American Society for Clinical Investigation.

  83. Neis, E., Dejong, C., & Rensen, S. (2015). The role of microbial amino acid metabolism in host metabolism. Nutrients, 7(4), 2930–2946. https://doi.org/10.3390/nu7042930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pedersen, H. K., Gudmundsdottir, V., Nielsen, H. B., Hyotylainen, T., Nielsen, T., Jensen, B. A. H., et al. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016 535:7612 (Vol. 535, pp. 376–381): Nature Publishing Group.

  85. Shimomura, Y., Honda, T., Shiraki, M., Murakami, T., Sato, J., Kobayashi, H., et al. (2006). Branched-chain amino acid catabolism in exercise and liver disease. The Journal of Nutrition (Vol. 136, pp. 250S-253S): Oxford Academic.

  86. Neinast, M., Murashige, D., & Arany, Z. (2019). Branched chain amino acids. Annual Review of Physiology, 81(1), 139–164. https://doi.org/10.1146/annurev-physiol-020518-114455

    Article  CAS  PubMed  Google Scholar 

  87. Hutson, S. M. (1988). Subcellular distribution of branched-chain aminotransferase activity in rat tissues. The Journal of Nutrition (Vol. 118, pp. 1475–1481): Oxford Academic.

  88. Shou, J., CHen, P.-J., & Xiao, W.-H. (2019). The effects of BCAAs on insulin resistance in athletes. Journal of Nutritional Science and Vitaminology (Vol. 65, pp. 383–389): Center for Academic Publications Japan.

  89. Zinnanti, W. J., & Lazovic, J. (2012). Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy. Journal of Inherited Metabolic Disease (Vol. 35, pp. 71–79): John Wiley & Sons, Ltd.

  90. Roda, K. M. O., Vincenzi, R., Fonseca, E. A., Benavides, M., Turine, P., Afonso, R. C., et al. (2019). Domino liver transplant in maple syrup urine disease: Technical details of cases in which the first surgery involved a living donor. Transplantation, 103(3), 536–543. https://doi.org/10.1097/tp.0000000000002300

    Article  PubMed  Google Scholar 

  91. Suryawan, A., Hawes, J. W., Harris, R. A., Shimomura, Y., Jenkins, A. E., & Hutson, S. M. (1998). A molecular model of human branched-chain amino acid metabolism. The American Journal of Clinical Nutrition, 68(1), 72–81. https://doi.org/10.1093/ajcn/68.1.72

    Article  CAS  PubMed  Google Scholar 

  92. Shimomura, Y., Honda, T., Shiraki, M., Murakami, T., Sato, J., Kobayashi, H., et al. (2006). Branched-chain amino acid catabolism in exercise and liver disease. The Journal of Nutrition, 136(1), 250S-253S. https://doi.org/10.1093/jn/136.1.250s

    Article  CAS  PubMed  Google Scholar 

  93. Kasperek, G. J., Dohm, G. L., & Snider, R. D. (1985). Activation of branched-chain keto acid dehydrogenase by exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 248(2), R166–R171. https://doi.org/10.1152/ajpregu.1985.248.2.R166

    Article  CAS  Google Scholar 

  94. Shimomura, Y., Fujii, H., Suzuki, M., Murakami, T., Fujitsuka, N., & Nakai, N. (1995). Branched-chain α-keto acid dehydrogenase complex in rat skeletal muscle: Regulation of the activity and gene expression by nutrition and physical exercise. The Journal of Nutrition, 125(suppl_6), 1762S-1765S, https://doi.org/10.1093/jn/125.suppl_6.1762S.

  95. Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 15(5), 606–614. https://doi.org/10.1016/j.cmet.2012.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Poloz, Y., & Stambolic, V. (2015). Obesity and cancer, a case for insulin signaling. Cell Death & Disease, 6(12), e2037–e2037. https://doi.org/10.1038/cddis.2015.381

    Article  CAS  Google Scholar 

  97. Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9(4), 311–326. https://doi.org/10.1016/j.cmet.2009.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448–453. https://doi.org/10.1038/nm.2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brocco, D., Florio, R., De Lellis, L., Veschi, S., Grassadonia, A., Tinari, N., et al. (2020). The role of dysfunctional adipose tissue in pancreatic cancer: A molecular perspective. Cancers (Basel), 12(7), https://doi.org/10.3390/cancers12071849.

  100. Eriksson, L. S., & Björkman, O. (1993). Influence of insulin on peripheral uptake of branched chain amino acids in the 60-hour fasted state. Clinical Nutrition, 12(4), 217–222. https://doi.org/10.1016/0261-5614(93)90018-Y

    Article  CAS  PubMed  Google Scholar 

  101. Schauder, P., Herbertz, L., & Langenbeck, U. (1985). Serum branched chain amino and keto acid response to fasting in humans. Metabolism, 34(1), 58–61. https://doi.org/10.1016/0026-0495(85)90061-7

    Article  CAS  PubMed  Google Scholar 

  102. Nair, K. S., Woolf, P. D., Welle, S. L., & Matthews, D. E. (1987). Leucine, glucose, and energy metabolism after 3 days of fasting in healthy human subjects. American Journal of Clinical Nutrition, 46(4), 557–562. https://doi.org/10.1093/ajcn/46.4.557

    Article  CAS  Google Scholar 

  103. Pozefsky, T., Tancredi, R. G., Moxley, R. T., Dupre, J., & Tobin, J. D. (1976). Effects of brief starvation on muscle amino acid metabolism in nonobese man. Journal of Clinical Investigation, 57(2), 444–449. https://doi.org/10.1172/jci108295

    Article  CAS  PubMed Central  Google Scholar 

  104. Holecek, M., Sprongl, L., & Tilser, I. (2001). Metabolism of branched-chain amino acids in starved rats: The role of hepatic tissue. Physiological Research, 50(1), 25–33.

    CAS  PubMed  Google Scholar 

  105. Adibi, S. (1968). Influence of dietary deprivations on plasma concentration of free amino acids of man. Journal of Applied Physiology, 25(1), 52–57. https://doi.org/10.1152/jappl.1968.25.1.52

    Article  CAS  PubMed  Google Scholar 

  106. Felig, P., Marliss, E., & Cahill, G. F. (1969). Plasma amino acid levels and insulin secretion in obesity. New England Journal of Medicine, 281(15), 811–816. https://doi.org/10.1056/nejm196910092811503

    Article  CAS  Google Scholar 

  107. Holeček, M. (1996). Leucine metabolism in fasted and tumor necrosis factor-treated rats. Clinical Nutrition, 15(2), 91–93. https://doi.org/10.1016/S0261-5614(96)80028-8

    Article  PubMed  Google Scholar 

  108. Nawabi, M. D., Block, K. P., Chakrabarti, M. C., & Buse, M. G. (1990). Administration of endotoxin, tumor necrosis factor, or interleukin 1 to rats activates skeletal muscle branched-chain alpha-keto acid dehydrogenase. Journal of Clinical Investigation, 85(1), 256–263. https://doi.org/10.1172/jci114421

    Article  CAS  PubMed Central  Google Scholar 

  109. Hamaya, R., Mora, S., Lawler, P. R., Cook, N. R., Ridker, P. M., Buring, J. E., et al. (2021). Association of plasma branched-chain amino acid with biomarkers of inflammation and lipid metabolism in women. Circulation: Genomic and Precision Medicine, 14(4), e003330. https://doi.org/10.1161/CIRCGEN.121.003330

    Article  CAS  Google Scholar 

  110. Shin, A. C., Fasshauer, M., Filatova, N., Grundell, L. A., Zielinski, E., Zhou, J.-Y., et al. (2014). Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metabolism, 20(5), 898–909. https://doi.org/10.1016/j.cmet.2014.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ho, J. E., Larson, M. G., Vasan, R. S., Ghorbani, A., Cheng, S., Rhee, E. P., et al. (2013). Metabolite profiles during oral glucose challenge. Diabetes, 62(8), 2689–2698. https://doi.org/10.2337/db12-0754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chevalier, S., Gougeon, R., Kreisman, S. H., Cassis, C., & Morais, J. A. (2004). The hyperinsulinemic amino acid clamp increases whole-body protein synthesis in young subjects<sup>1</sup>. Metabolism - Clinical and Experimental, 53(3), 388–396. https://doi.org/10.1016/j.metabol.2003.09.016

    Article  CAS  PubMed  Google Scholar 

  113. Nellis, M. M., Doering, C. B., Kasinski, A., & Danner, D. J. (2002). Insulin increases branched-chain alpha-ketoacid dehydrogenase kinase expression in Clone 9 rat cells. American journal of physiology. Endocrinology and metabolism, 283(4), E853-860. https://doi.org/10.1152/ajpendo.00133.2002

    Article  CAS  PubMed  Google Scholar 

  114. Biswas, D., Duffley, L., & Pulinilkunnil, T. (2019). Role of branched-chain amino acid–catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. The FASEB Journal, 33(8), 8711–8731. https://doi.org/10.1096/fj.201802842rr

    Article  CAS  PubMed  Google Scholar 

  115. Zwick, R. K., Guerrero-Juarez, C. F., Horsley, V., & Plikus, M. V. (2018). Anatomical, physiological, and functional diversity of adipose tissue. Cell Metabolism, 27(1), 68–83. https://doi.org/10.1016/j.cmet.2017.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lackey, D. E., Lynch, C. J., Olson, K. C., Mostaedi, R., Ali, M., Smith, W. H., et al. (2013). Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. American Journal of Physiology-Endocrinology and Metabolism (Vol. 304, pp. 1175–1187).

  117. Zimmerman, H. A., Olson, K. C., Chen, G., & Lynch, C. J. (2013). Adipose transplant for inborn errors of branched chain amino acid metabolism in mice. Molecular Genetics and Metabolism, 109(4), 345–353. https://doi.org/10.1016/j.ymgme.2013.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chuang, D. T., Hu, C. W. C., & Patel, M. S. (1983). Induction of the branched-chain 2-oxo acid dehydrogenase complex in 3T3-L1 adipocytes during differentiation. Biochemical Journal, 214(1), 177–181. https://doi.org/10.1042/bj2140177

    Article  CAS  PubMed Central  Google Scholar 

  119. Zaganjor, E., Yoon, H., Spinelli, J. B., Nunn, E. R., Laurent, G., Keskinidis, P., et al. (2021). SIRT4 is an early regulator of branched-chain amino acid catabolism that promotes adipogenesis. Cell Reports, 36(2), 109345. https://doi.org/10.1016/j.celrep.2021.109345

    Article  CAS  PubMed  Google Scholar 

  120. She, P., Reid, T. M., Bronson, S. K., Vary, T. C., Hajnal, A., Lynch, C. J., et al. (2007). Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metabolism, 6(3), 181–194. https://doi.org/10.1016/j.cmet.2007.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, S., Gulseth, H. L., Langleite, T. M., Norheim, F., Olsen, T., Refsum, H., et al. (2020). Branched-chain amino acid metabolism, insulin sensitivity and liver fat response to exercise training in sedentary dysglycaemic and normoglycaemic men. Diabetologia 2020 64:2 (Vol. 64, pp. 410–423): Springer.

  122. Boulet, M. M., Chevrier, G., Grenier-Larouche, T., Pelletier, M., Nadeau, M., Scarpa, J., et al. (2015). Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. American journal of physiology. Endocrinology and metabolism, 309(8), E736-746. https://doi.org/10.1152/ajpendo.00231.2015

    Article  CAS  PubMed  Google Scholar 

  123. Polakof, S., Rémond, D., David, J., Dardevet, D., & Savary-Auzeloux, I. (2018). Time-course changes in circulating branched-chain amino acid levels and metabolism in obese Yucatan minipig. Nutrition, 50, 66–73. https://doi.org/10.1016/j.nut.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  124. Raajendiran, A., Krisp, C., Souza, D. P., Ooi, G., Burton, P. R., Taylor, R. A., et al. (2021). Proteome analysis of human adipocytes identifies depot-specific heterogeneity at metabolic control points. American journal of physiology. Endocrinology and metabolism, 320(6), E1068-e1084. https://doi.org/10.1152/ajpendo.00473.2020

    Article  CAS  PubMed  Google Scholar 

  125. Manolopoulos, K. N., Karpe, F., & Frayn, K. N. (2010). Gluteofemoral body fat as a determinant of metabolic health. International Journal of Obesity, 34(6), 949–959. https://doi.org/10.1038/ijo.2009.286

    Article  CAS  PubMed  Google Scholar 

  126. Ina, M.-P., Jinchu, V., Marie-Michelle, S., Elin, G., & André, T. (2020). Large-scale analysis of circulating amino acids and gene expression in relation to abdominal obesity. Cold Spring Harbor Laboratory.

  127. Kedishvili, N. Y., Popov, K. M., Jaskiewicz, J. A., & Harris, R. A. (1994). Coordinated expression of valine catabolic enzymes during adipogenesis: Analysis of activity, mRNA, protein levels, and metabolic consequences. Archives of Biochemistry and Biophysics, 315(2), 317–322. https://doi.org/10.1006/abbi.1994.1506

    Article  CAS  PubMed  Google Scholar 

  128. Si, Y., Yoon, J., & Lee, K. (2007). Flux profile and modularity analysis of time-dependent metabolic changes of de novo adipocyte formation. American journal of physiology. Endocrinology and metabolism, 292(6), E1637-1646. https://doi.org/10.1152/ajpendo.00670.2006.

    Article  CAS  PubMed  Google Scholar 

  129. Katagiri, R., Goto, A., Nakagawa, T., Nishiumi, S., Kobayashi, T., Hidaka, A., et al. (2018). Increased levels of branched-chain amino acid associated with increased risk of pancreatic cancer in a prospective case–control study of a large cohort. Gastroenterology (Vol. 155, pp. 1474–1482.e1471): Elsevier.

  130. Sivanand, S., & Heiden, M. G. V. (2020). Emerging roles for branched-chain amino acid metabolism in cancer. Cancer Cell (Vol. 37, pp. 147–156): Elsevier.

  131. Tobias, D. K., Hazra, A., Lawler, P. R., Chandler, P. D., Chasman, D. I., Buring, J. E., et al. (2020). Circulating branched-chain amino acids and long-term risk of obesity-related cancers in women. Scientific Reports, 10(1), https://doi.org/10.1038/s41598–020–73499-x

  132. Jiang, W., Qiao, L., Han, Y., Zhang, A., An, H., Xiao, J., et al. (2021). Pancreatic stellate cells regulate branched-chain amino acid metabolism in pancreatic cancer. Annals of Translational Medicine, 9(5), 417–417, https://doi.org/10.21037/atm-21–761

  133. Roux, C., Riganti, C., Borgogno, S. F., Curto, R., Curcio, C., Catanzaro, V., et al. (2017). Endogenous glutamine decrease is associated with pancreatic cancer progression. Oncotarget, 8(56), 95361–95376. https://doi.org/10.18632/oncotarget.20545

  134. Fukutake, N., Ueno, M., Hiraoka, N., Shimada, K., Shiraishi, K., Saruki, N., et al. (2015). A novel multivariate index for pancreatic cancer detection based on the plasma free amino acid profile. PLoS ONE, 10(7), e0132223. https://doi.org/10.1371/journal.pone.0132223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ananieva, E. A., Bostic, J. N., Torres, A. A., Glanz, H. R., McNitt, S. M., Brenner, M. K., et al. (2018). Mice deficient in the mitochondrial branched-chain aminotransferase (BCATm) respond with delayed tumour growth to a challenge with EL-4 lymphoma. British Journal of Cancer, 119(8), 1009–1017. https://doi.org/10.1038/s41416-018-0283-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Biswas, D., Dao, K. T., Mercer, A., Cowie, A. M., Duffley, L., El Hiani, Y., et al. (2020). Branched-chain ketoacid overload inhibits insulin action in the muscle. Journal of Biological Chemistry (Vol. 295, pp. 15597–15621): Elsevier.

  137. Biswas, D., Tozer, K., Dao, K. T., Perez, L. J., Mercer, A., Brown, A., et al. (2020). Adverse outcomes in obese cardiac surgery patients correlates with altered branched-chain amino acid catabolism in adipose tissue and heart. [Original Research]. Frontiers in Endocrinology, 11(534), https://doi.org/10.3389/fendo.2020.00534.

  138. Badoud, F., Lam, K. P., DiBattista, A., Perreault, M., Zulyniak, M. A., Cattrysse, B., et al. (2014). Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese. Journal of Proteome Research, 13(7), 3455–3466. https://doi.org/10.1021/pr500416v

    Article  CAS  PubMed  Google Scholar 

  139. White, P. J., Lapworth, A. L., An, J., Wang, L., McGarrah, R. W., Stevens, R. D., et al. (2016). Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab, 5(7), 538–551. https://doi.org/10.1016/j.molmet.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Van Der Kolk, B. W., Saari, S., Lovric, A., Arif, M., Alvarez, M., Ko, A., et al. (2021). Molecular pathways behind acquired obesity: Adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI. Cell Reports Medicine, 2(4), 100226. https://doi.org/10.1016/j.xcrm.2021.100226

    Article  PubMed  PubMed Central  Google Scholar 

  141. Yin, Q., Brameld, J. M., Parr, T., & Murton, A. J. (2020). Leucine and mTORc1 act independently to regulate 2-deoxyglucose uptake in L6 myotubes. Amino Acids 2020 52:3 (Vol. 52, pp. 477–486): Springer.

  142. Cifarelli, V., Beeman, S. C., Smith, G. I., Yoshino, J., Morozov, D., Beals, J. W., et al. (2020). Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. The Journal of Clinical Investigation, 130(12), 6688–6699. https://doi.org/10.1172/jci141828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Burrill, J. S., Long, E. K., Reilly, B., Deng, Y., Armitage, I. M., Scherer, P. E., et al. (2015). Inflammation and ER stress regulate branched-chain amino acid uptake and metabolism in adipocytes. Molecular Endocrinology, 29(3), 411–420. https://doi.org/10.1210/me.2014-1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Petruzzelli, M., & Wagner, E. F. (2016). Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes & Development, 30(5), 489–501. https://doi.org/10.1101/gad.276733.115

    Article  CAS  Google Scholar 

  145. Rohm, M., Schäfer, M., Laurent, V., Üstünel, B. E., Niopek, K., Algire, C., et al. (2016). An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 22(10), 1120–1130. https://doi.org/10.1038/nm.4171

    Article  CAS  PubMed  Google Scholar 

  146. Boden, G. (2009). Endoplasmic reticulum stress: Another link between obesity and insulin resistance/inflammation? Diabetes, 58(3), 518–519. https://doi.org/10.2337/db08-1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kays, J. K., Shahda, S., Stanley, M., Bell, T. M., O’Neill, B. H., Kohli, M. D., et al. (2018). Three cachexia phenotypes and the impact of fat-only loss on survival in FOLFIRINOX therapy for pancreatic cancer. Journal of Cachexia, Sarcopenia and Muscle, 9(4), 673–684. https://doi.org/10.1002/jcsm.12307

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bachmann, J., Büchler, M. W., Friess, H., & Martignoni, M. E. (2013). Cachexia in patients with chronic pancreatitis and pancreatic cancer: Impact on survival and outcome. Nutrition and Cancer, 65(6), 827–833. https://doi.org/10.1080/01635581.2013.804580

    Article  PubMed  Google Scholar 

  149. Choi, Y., Oh, D.-Y., Kim, T.-Y., Lee, K.-H., Han, S.-W., Im, S.-A., et al. (2015). Skeletal muscle depletion predicts the prognosis of patients with advanced pancreatic cancer undergoing palliative chemotherapy, independent of body mass index. PLoS ONE, 10(10), e0139749. https://doi.org/10.1371/journal.pone.0139749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hendifar, A. E., Chang, J. I., Huang, B. Z., Tuli, R., & Wu, B. U. (2017). Cachexia, and not obesity, prior to pancreatic cancer diagnosis worsens survival and is negated by chemotherapy. Journal of Gastrointestinal Oncology, 9(1), 17–23.

    Article  Google Scholar 

  151. Mitsunaga, S., Kasamatsu, E., & Machii, K. (2020). Incidence and frequency of cancer cachexia during chemotherapy for advanced pancreatic ductal adenocarcinoma. Supportive Care in Cancer, 28(11), 5271–5279. https://doi.org/10.1007/s00520-020-05346-8

    Article  PubMed  PubMed Central  Google Scholar 

  152. Danai, L. V., Babic, A., Rosenthal, M. H., Dennstedt, E. A., Muir, A., Lien, E. C., et al. (2018). Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature, 558(7711), 600–604. https://doi.org/10.1038/s41586-018-0235-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Argilés, J. M., Betancourt, A., Guàrdia-Olmos, J., Peró-Cebollero, M., López-Soriano, F. J., Madeddu, C., et al. (2017). Validation of the CAchexia SCOre (CASCO). Staging cancer patients: The use of miniCASCO as a simplified tool. [Original Research]. Frontiers in Physiology, 8(92), https://doi.org/10.3389/fphys.2017.00092.

  154. Evans, W. J., Morley, J. E., Argilés, J., Bales, C., Baracos, V., Guttridge, D., et al. (2008). Cachexia: A new definition. Clinical Nutrition, 27(6), 793–799. https://doi.org/10.1016/j.clnu.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  155. Penet, M.-F., & Bhujwalla, Z. M. (2015). Cancer cachexia, recent advances, and future directions. The Cancer Journal, 21(2), 117–122. https://doi.org/10.1097/ppo.0000000000000100

    Article  PubMed  Google Scholar 

  156. Kosmiski, L., Schmiege, S. J., Mascolo, M., Gaudiani, J., & Mehler, P. S. (2014). Chronic starvation secondary to anorexia nervosa is associated with an adaptive suppression of resting energy expenditure. The Journal of Clinical Endocrinology & Metabolism, 99(3), 908–914. https://doi.org/10.1210/jc.2013-1694

    Article  CAS  Google Scholar 

  157. Frankenfield, D. C., Smith, J. S., Jr., Cooney, R. N., Blosser, S. A., & Sarson, G. Y. (1997). Relative association of fever and injury with hypermetabolism in critically ill patients. Injury, 28(9), 617–621. https://doi.org/10.1016/S0020-1383(97)00117-4

    Article  CAS  PubMed  Google Scholar 

  158. Knox, L. S., Crosby, L. O., Feurer, I. D., Buzby, G. P., Miller, C. L., & Mullen, J. L. (1983). Energy expenditure in malnourished cancer patients. Annals of Surgery, 197(2), 152–162. https://doi.org/10.1097/00000658-198302000-00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tan, C. R., Yaffee, P. M., Jamil, L. H., Lo, S. K., Nissen, N., Pandol, S. J., et al. (2014). Pancreatic cancer cachexia: A review of mechanisms and therapeutics. Frontiers in Physiology, 5, 88. https://doi.org/10.3389/fphys.2014.00088

    Article  PubMed  PubMed Central  Google Scholar 

  160. Arner, P., & Langin, D. (2014). Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends in Endocrinology and Metabolism, 25(5), 255–262. https://doi.org/10.1016/j.tem.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  161. Das, S. K., Eder, S., Schauer, S., Diwoky, C., Temmel, H., Guertl, B., et al. (2011). Adipose triglyceride lipase contributes to cancer-associated cachexia. Science, 333(6039), 233–238. https://doi.org/10.1126/science.1198973

    Article  CAS  PubMed  Google Scholar 

  162. Agustsson, T., Rydén, M., Hoffstedt, J., Van Harmelen, V., Dicker, A., Laurencikiene, J., et al. (2007). Mechanism of increased lipolysis in cancer cachexia. Cancer Research, 67(11), 5531–5537. https://doi.org/10.1158/0008-5472.can-06-4585

    Article  CAS  PubMed  Google Scholar 

  163. Fouladiun, M., Körner, U., Bosaeus, I., Daneryd, P., Hyltander, A., & Lundholm, K. G. (2005). Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care—correlations with food intake, metabolism, exercise capacity, and hormones. Cancer, 103(10), 2189–2198. https://doi.org/10.1002/cncr.21013

    Article  PubMed  Google Scholar 

  164. Narasimhan, A., Zhong, X., Au, E., Ceppa, E. P., Nakeeb, A., House, M. G., et al. (2021). Profiling of matched adipose and skeletal muscle in human pancreatic cancer cachexia reveals distinct gene profiles with convergent pathways. Preprints.

  165. Babic, A., Rosenthal, M. H., Bamlet, W. R., Takahashi, N., Sugimoto, M., Danai, L. V., et al. (2019). Postdiagnosis loss of skeletal muscle, but not adipose tissue, is associated with shorter survival of patients with advanced pancreatic cancer. Cancer Epidemiology and Prevention Biomarkers (Vol. 28, pp. 2062–2069): American Association for Cancer Research.

  166. Naumann, P., Eberlein, J., Farnia, B., Liermann, J., Hackert, T., Debus, J., et al. (2019). Cachectic body composition and inflammatory markers portend a poor prognosis in patients with locally advanced pancreatic cancer treated with chemoradiation. Cancers, 11(11), 1655. https://doi.org/10.3390/cancers11111655

    Article  CAS  PubMed Central  Google Scholar 

  167. Daas, S. I., Rizeq, B. R., & Nasrallah, G. K. (2018). Adipose tissue dysfunction in cancer cachexia. Journal of Cellular Physiology, 234(1), 13–22. https://doi.org/10.1002/jcp.26811

    Article  CAS  PubMed  Google Scholar 

  168. Laurencikiene, J., Stenson, B. M., Nordström, E. A., Agustsson, T., Langin, D., Isaksson, B., et al. (2008). Evidence for an important role of CIDEA in human cancer cachexia. Cancer Research (Vol. 68, pp. 9247–9254): American Association for Cancer Research.

  169. Tsoli, M., Swarbrick, M. M., & Robertson, G. R. (2016). Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia. Seminars in Cell & Developmental Biology, 54, 68–81. https://doi.org/10.1016/j.semcdb.2015.10.039

    Article  CAS  Google Scholar 

  170. Zhang, F., Zhao, S., Yan, W., Xia, Y., Chen, X., Wang, W., et al. (2016). Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy. eBioMedicine, 13, 157–167. https://doi.org/10.1016/j.ebiom.2016.10.013

    Article  PubMed  PubMed Central  Google Scholar 

  171. Rydén, M., Agustsson, T., Laurencikiene, J., Britton, T., Sjölin, E., Isaksson, B., et al. (2008). Lipolysis—not inflammation, cell death, or lipogenesis—is involved in adipose tissue loss in cancer cachexia. Cancer (Vol. 113, pp. 1695–1704): John Wiley & Sons, Ltd.

  172. Bartelt, A., & Heeren, J. (2014). Adipose tissue browning and metabolic health. Nature Reviews Endocrinology, 10(1), 24–36. https://doi.org/10.1038/nrendo.2013.204

    Article  CAS  PubMed  Google Scholar 

  173. Sah, R. P., Sharma, A., Nagpal, S., Patlolla, S. H., Sharma, A., Kandlakunta, H., et al. (2019). Phases of metabolic and soft tissue changes in months preceding a diagnosis of pancreatic ductal adenocarcinoma. Gastroenterology, 156(6), 1742–1752. https://doi.org/10.1053/j.gastro.2019.01.039

    Article  PubMed  Google Scholar 

  174. Villarroya, J., Cereijo, R., Gavaldà-Navarro, A., Peyrou, M., Giralt, M., & Villarroya, F. (2019). New insights into the secretory functions of brown adipose tissue. Journal of Endocrinology, 243(2), R19-r27. https://doi.org/10.1530/joe-19-0295

    Article  CAS  Google Scholar 

  175. Gallot, Y. S., Durieux, A. C., Castells, J., Desgeorges, M. M., Vernus, B., Plantureux, L., et al. (2014). Myostatin gene inactivation prevents skeletal muscle wasting in cancer. Cancer Research, 74(24), 7344–7356. https://doi.org/10.1158/0008-5472.Can-14-0057

    Article  CAS  PubMed  Google Scholar 

  176. Talar-Wojnarowska, R., Wozniak, M., Borkowska, A., Olakowski, M., & Malecka-Panas, E. (2020). Clinical significance of activin A and myostatin in patients with pancreatic adenocarcinoma and progressive weight loss. J Physiol Pharmacol, 71(1), https://doi.org/10.26402/jpp.2020.1.10.

  177. Abdullahi, A., & Jeschke, M. G. (2017). Taming the flames: Targeting white adipose tissue browning in hypermetabolic conditions. Endocrine Reviews, 38(6), 538–549. https://doi.org/10.1210/er.2017-00163

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kwok, K. H., Lam, K. S., & Xu, A. (2016). Heterogeneity of white adipose tissue: Molecular basis and clinical implications. Experimental & Molecular Medicine, 48(3), e215. https://doi.org/10.1038/emm.2016.5

    Article  CAS  Google Scholar 

  179. Arslan, A. A., Helzlsouer, K. J., Kooperberg, C., Shu, X. O., Steplowski, E., Bueno-de-Mesquita, H. B., et al. (2010). Anthropometric measures, body mass index, and pancreatic cancer: A pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). Archives of Internal Medicine, 170(9), 791–802. https://doi.org/10.1001/archinternmed.2010.63

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cascetta, P., Cavaliere, A., Piro, G., Torroni, L., Santoro, R., Tortora, G., et al. (2018). Pancreatic cancer and obesity: Molecular mechanisms of cell transformation and chemoresistance. Int J Mol Sci, 19(11), https://doi.org/10.3390/ijms19113331.

  181. Chang, H.-H., & Eibl, G. (2019). Obesity-induced adipose tissue inflammation as a strong promotional factor for pancreatic ductal adenocarcinoma. Cells (Vol. 8, pp. 673): Multidisciplinary Digital Publishing Institute (MDPI).

  182. Okumura, T., Ohuchida, K., Sada, M., Abe, T., Endo, S., Koikawa, K., et al. (2017). Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells. Oncotarget (Vol. 8, pp. 18280): Impact Journals, LLC.

  183. Wajchenberg, B. L. (2000). Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocrine Reviews, 21(6), 697–738. https://doi.org/10.1210/edrv.21.6.0415

    Article  CAS  PubMed  Google Scholar 

  184. Chanclón, B., Wu, Y., Vujičić, M., Bauzá-Thorbrügge, M., Banke, E., Micallef, P., et al. (2020). Peripancreatic adipose tissue protects against high-fat-diet-induced hepatic steatosis and insulin resistance in mice. International Journal of Obesity, 44(11), 2323–2334. https://doi.org/10.1038/s41366-020-00657-6

    Article  CAS  PubMed  Google Scholar 

  185. Jamieson, N. B., Foulis, A. K., Oien, K. A., Dickson, E. J., Imrie, C. W., Carter, R., et al. (2011). Peripancreatic fat invasion is an independent predictor of poor outcome following pancreaticoduodenectomy for pancreatic ductal adenocarcinoma. Journal of Gastrointestinal Surgery, 15(3), 512–524. https://doi.org/10.1007/s11605-010-1395-4

    Article  PubMed  Google Scholar 

  186. Zhang, Y., Daquinag, A. C., Amaya-Manzanares, F., Sirin, O., Tseng, C., & Kolonin, M. G. (2012). Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Research, 72(20), 5198–5208. https://doi.org/10.1158/0008-5472.Can-12-0294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All figures were created with BioRender.com.

Funding

The study was supported by grant NV19-01–00101 of the Czech Health Research Council, PROGRES Q36 of Charles University, EFSD mentorship program supported by AstraZeneca, and the institutional support of IPHYS CAS RVO: 67985823.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Smolková.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate.

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossmeislová, L., Gojda, J. & Smolková, K. Pancreatic cancer: branched-chain amino acids as putative key metabolic regulators?. Cancer Metastasis Rev 40, 1115–1139 (2021). https://doi.org/10.1007/s10555-021-10016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-021-10016-0

Keywords

Navigation