Skip to main content

Advertisement

Log in

A novel water-soluble thiosemicarbazone Schiff base ligand and its complexes as potential anticancer agents and cellular fluorescence imaging

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A novel fluorescent ligand (H2LCl⋅1.5CH3OH, 1) was synthesized and metal complexes of 1 with Mn(II), Fe(III), Ni(II), Cu(II), and Zn(II) were obtained as Mn(HL)2Cl2 (2), Fe(HL)2Cl3⋅3H2O (3), Ni(L)(HL)Cl⋅8H2O (4), Cu(HL)Cl2⋅4H2O (5), Zn(H2L)Cl3 (6), respectively. These compounds were identified by spectroscopic methods, elemental analysis, molar conductivity, and single-crystal X-ray crystallography. According to the crystal structure of 4 nickel (II), center is surrounded by two ligands in a distorted octahedral geometry. The ligand and its complexes are soluble in water and have excellent stability. In vitro anti-proliferative activity of these compounds was evaluated against human breast adenocarcinoma (MCF-7) and human lipo-sarcoma (SW-872) as cancer cells and human fibroblasts (HFF-2) as normal cells by MTT assay. Interestingly, complex 5 exhibited excellent activity against both cancer cells with low IC50 value 22.18 ± 0.35 μg/mL (35.66 ± 0.56 μM) for SW-872 and 79.41 ± 3.54 μg/mL (127.6 ± 5.69 μM) for MCF-7 among the compounds and in comparison with paclitaxel (PTX) which acts finely. Morphological changes were evaluated by flow cytometry that revealed apoptosis is the main cause of cell death. Likewise, cell cycle studies indicated the cell cycle arrest in the G1 and S phases for complex 5 against MCF-7 and SW-872 cancer cells, while complex 6 could arrest the MCF-7 and SW-872 cells in G2 and G1 phases, respectively. All of the compounds are fluorescent which enabled us to monitor the uptake and intracellular distribution in living human cancer cells by fluorescence microscopy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. Foo JB, Shan Ng L, Lim JH, Tan PX, Lor YZ, Loo JSE, Low ML, Chan LC, Beh CY, Leong SW, Yazan LS, Tor YS, Howa CW (2019) RSC Adv 9:18359–18370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elamathi C, Fronczek FR, Madankumar A, Prabhakaran R (2020) New J Chem 44:4158–4170

    Article  CAS  Google Scholar 

  3. Al-Harbi RAK, El-Sharief MAMSh, Abbas SY (2019) Bioorg Chem 90:103088–103097

    Article  CAS  PubMed  Google Scholar 

  4. Fang Y, Li J, Han P, Han Q, Li M (2018) Toxicol Res 7:987–993

    Article  CAS  Google Scholar 

  5. Kalaiarasi G, Dharani S, Lynch VM, Prabhakarana R (2019) Dalton Trans 48:12496–12511

    Article  CAS  PubMed  Google Scholar 

  6. Dankhoff K, Gold M, Kober L, Schmitt F, Pfeir L, Dürrmann A, Kostrhunova H, Rothemund M, Brabec V, Schobert R, Weber B (2019) Dalton Trans 48:15220–15230

    Article  CAS  PubMed  Google Scholar 

  7. Jin J, Hu J, Qin Y, Zhang J, Zhao J, Yueb L, Hou H (2019) New J Chem 43:19286–19297

    Article  CAS  Google Scholar 

  8. Cueva-Alique IDL, Muñoz-Moreno L, Torre-Rubio EDL, Bajo AM, Gude L, Cuenca T, Royo E (2019) Dalton Trans 48:14279–14293

    Article  PubMed  Google Scholar 

  9. Lin X, Liu Y, Xie C, Bao W, Shen J, Xu J (2017) RSC Adv 7:26478–26486

    Article  CAS  Google Scholar 

  10. Shanmugapriya A, Dallemer F, Prabhakaran R (2018) New J Chem 42:18850–18864

    Article  CAS  Google Scholar 

  11. Cavalcante CDQO, Arcanjo DDS, Silva GGD, Oliveira DMD, Gatto CC (2019) New J Chem 43:11209–11221

    Article  CAS  Google Scholar 

  12. Zampakou M, Hatzidimitriou AG, Papadopoulos AN, Psomas G (2015) J Coord Chem 68(24):4355–4372

    Article  CAS  Google Scholar 

  13. Kalaiarasi G, Jain R, Puschman H, Chandrika SP, Preethi K, Prabhakaran R (2017) New J Chem 41:2543–2560

    Article  CAS  Google Scholar 

  14. Zampakou M, Balala S, Perdih F, Kalogiannis S, Turel I, Psomas G (2015) RSC Adv 5:11861–11872

    Article  CAS  Google Scholar 

  15. Balakrishnan N, Haribabu J, Dhanabalan AK, Swaminathan S, Sun S, Dibwe DF, Bhuvanesh N, Awale S, Karvembu R (2020) Dalton Trans 49:9411–9424

    Article  CAS  PubMed  Google Scholar 

  16. Kathiresan S, Mugesh S, Annaraj J, Murugan M (2017) New J Chem 41:1267–1283

    Article  CAS  Google Scholar 

  17. Singh NK, Yadav PN, Kumbhar AA, Pokhrel YR (2020) J Inorg Biochem 210:111134

    Article  CAS  PubMed  Google Scholar 

  18. Sarkar S, Mondal T, Roy S, Saha R, Ghosh AK, Panja SS (2018) New J Chem 42:15157–15169

    Article  CAS  Google Scholar 

  19. Adak P, Ghosh B, Bauza A, Frontera A, Herron SR, Chattopadhyay SK (2020) RSC Adv 10:12735–12746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Fang Y, Zhao M, Li M, Ji Y, Han Q (2017) Med Chem Commun 8:2125–2132

    Article  CAS  Google Scholar 

  21. Matesanz AI, Jimenez-Faraco E, Ruiz MC, Balsa LM, Navarro-Ranninger C, Leon IE, Quiroga AG (2018) Inorg Chem Front 5:73–83

    Article  CAS  Google Scholar 

  22. Kalaiarasi G, Rajkumar SRJ, Dharani S, Małecki JG, Prabhakaran R (2018) RSC Adv 8:1539–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sirbu A, Palamarciuc O, Babak MV, Lim JM, Ohui K, Enyedy EA, Shova S, Darvasiova D, Rapta P, Ang WH, Arion VB (2017) Dalton Trans 46:3833–3847

    Article  CAS  PubMed  Google Scholar 

  24. Milunovic MNM, Enyedy EA, Nagy NV, Kiss T, Trondl R, Jakupec MA, Keppler BK, Krachler R, Novitchi G, Vladimir B (2012) Arion VB. Inorg Chem 51:9309–9321

    Article  CAS  PubMed  Google Scholar 

  25. Milunovic MNM, Dobrova A, Novitchi G, Gligorijevic N, Radulovic S, Kozisek J, Rapta P, Enyedy EA, Arion VB (2017) Eur J Inorg Chem 40:4773–4783

    Article  Google Scholar 

  26. Bacher F, Enyedy EA, Nagy NV, Rockenbauer A, Bognar GM, Trondl R, Novak MS, Klapproth E, Kiss T, Arion VB (2013) Inorg Chem 52:8895–8908

    Article  CAS  PubMed  Google Scholar 

  27. Milunovic MNM, Palamarciuc O, Sirbu A, Shova A, Dumitrescu D, Dvoranova D, Rapta P, Petrasheuskaya TV, Enyedy EA, Spengler G, Ilic M, Sitte HH, Lubec G, Arion VB (2020) Biomolecules 10:1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cowley AR, Davis J, Dilworth JR, Donnelly PS, Dobson R, Nightingale A, Peach JM, Shore B, Kerr D, Seymour L (2005) Chem Commun 845–847

  29. Kowol CR, Trondl R, Arion VB, Jakupec MA, Lichtscheidl I, Keppler BK (2010) Dalton Trans 39:704–706

    Article  CAS  PubMed  Google Scholar 

  30. Hickey JL, James JL, Henderson CA, Price KA, Mot AI, Buncic G, Crouch PJ, White JM, White AR, Smith TA, Donnelly PS (2015) Inorg Chem 54:9556–9567

    Article  CAS  PubMed  Google Scholar 

  31. Mirzaahmadi A, Hosseini-Yazdi SA, Safarzadeh E, Baradaran B, Samolova E, Dusek M (2019) J Mol Liq 293:111412–111422

    Article  CAS  Google Scholar 

  32. Mirzaahmadi A, Hosseini-Yazdi SA, Mahdavi M, Samolova E, Dusek M (2021) Polyhedron 202:115205

    Article  CAS  Google Scholar 

  33. Berkebile JM, Fries AH (1948) J Chem Educ 25:617–618

    Article  CAS  Google Scholar 

  34. Cymerman-Craig J, Moyle M, White RA (1956) Org Synth 36:56–57

    Article  CAS  Google Scholar 

  35. Li Z, Xiang Y, Tong A (2008) Anal Chim Acta 619:75–80

    Article  CAS  PubMed  Google Scholar 

  36. Basu A, Thiyagarajan D, Kar C, Ramesh A, Das G (2013) RSC Adv 3:14088–14098

    Article  CAS  Google Scholar 

  37. Samanta S, Manna U, Ray T, Das G (2015) Dalton Trans 44:18902–18910

    Article  CAS  PubMed  Google Scholar 

  38. Neamtu M, Macaev F, Boldescu V, Hodoroaba VD, Nadejde C, Schneider RJ, Paul A, Ababei G, Panne U (2016) Appl Catal B Environ 183:335–342

    Article  CAS  Google Scholar 

  39. Evans DF (1959) J Chem Soc 2003–2005

  40. Basu A, Das G (2011) Dalton Trans 40:2837–2843

    Article  CAS  PubMed  Google Scholar 

  41. Kaushal M, Lobana TS, Nim L, Kaur J, Bala R, Hundal G, Arora DS, Garcia-Santos I, Duff CE, Jasinski JP (2018) New J Chem 42:15879–15894

    Article  CAS  Google Scholar 

  42. Zhang Z, Yu P, Gou Y, Zhang J, Li S, Cai M, Sun H, Yang F, Liang H (2019) J Med Chem 62:10630–10644

    Article  CAS  PubMed  Google Scholar 

  43. Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edition. Amsterdam

  44. Mahendiran D, Amuthakala S, Bhuvanesh NSP, Kumarc RS, Rahiman AK (2018) RSC Adv 8:16973–16990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qi J, Liu T, Zhao W, Zheng X, Wang Y (2020) RSC Adv 10:18553–18559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bharathi S, Mahendiran D, Kumar RS, Kim YG, Gajendiran M, Kim K, Rahiman AK (2019) Chem Res Toxicol 32:1554–1571

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the University of Tabriz-Iran and Iran National Science Foundation (INSF) for funding aspect of this present research. Also, we would like to thank Ardabil University of Medical Sciences and Immunology Research Center of Tabriz University of Medical Sciences. The authors kindly thank the project SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760 from Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports for supporting the crystallographic part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abolfazl Hosseini-Yazdi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

775_2023_2001_MOESM1_ESM.pdf

Supplementary file1Supplementary data associated 1H, 13C NMR of 1 and 6 and TGA-DTA diagrams for 2–5. Also, X-ray crystallography section was included. (PDF 4518 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feizpour, S., Hosseini-Yazdi, S.A., Safarzadeh, E. et al. A novel water-soluble thiosemicarbazone Schiff base ligand and its complexes as potential anticancer agents and cellular fluorescence imaging. J Biol Inorg Chem 28, 457–472 (2023). https://doi.org/10.1007/s00775-023-02001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-023-02001-5

Keywords

Navigation