Skip to main content
Log in

Photochemical synthesis of pink silver and its use for monitoring peptide nitration via surface enhanced Raman spectroscopy (SERS)

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Oxidative stress may cause extended tyrosine posttranslational modifications of peptides and proteins. The 3-nitro-L-tyrosine (Nit), which is typically formed, affects protein behavior during neurodegenerative processes, such as Alzheimer’s and Parkinson’s diseases. Such metabolic products may be conveniently detected at very low concentrations by surface enhanced Raman spectroscopy (SERS). Previously, we have explored the SERS detection of the Nit NO2 bending vibrational bands in a presence of hydrogen chloride (Niederhafner et al., Amino Acids 53:517–532, 2021, ibid). In this article, we describe performance of a new SERS substrate, “pink silver”, synthesized photochemically. It provides SERS even without the HCl induction, and the acid further decreases the detection limit about 9 times. Strong SERS bands were observed in the asymmetric (1550–1475 cm−1) and symmetric (1360–1290 cm−1) NO stretching in the NO2 group. The bending vibration was relatively weak, but appeared stronger when HCl was added. The band assignments were supported by density functional theory modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

Bn:

Benzyl

CCT:

Cartesian coordinate-based tensor transfer method

DIC:

N,N′-Diisopropylcarbodiimide

DMF:

N,N-Dimethylformamide

EDT:

1,2-Ethanedithiol

ESI:

Electrospray ionization

Fmoc:

9-Fluorenylmethoxycarbonyl

GSH:

Glutathione

HOBt:

N-Hydroxybenzotriazole

HPLC:

High-performance liquid chromatography

MD:

Molecular dynamics

MS:

Mass spectrometry

Nit:

3-Nitro-L-tyrosine

PTM:

Posttranslational modification

ROA:

Raman optical activity

SERS:

Surface-enhanced Raman spectroscopy

tBu:

Tert-Butyl

TEM:

Transmission electron microscopy

TFA:

Trifluoroacetic acid

TIS:

Triisopropyl silane

References

  • Abello N, Kerstjens HA, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, dinitration and proteomic methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8(7):3222–3238

    Article  CAS  PubMed  Google Scholar 

  • Abello N, Barroso B, Kerstjens HAM, Postma DS, Bischoff R (2010) Chemical labeling and enrichment of nitrotyrosine-containing peptides. Talanta 80:1503–1512

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Puebla RA, Contreras-Caceres R, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan LM (2009) Au@pNIPAM colloids as a molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem Int Ed 48(1):138–143

    Article  CAS  Google Scholar 

  • Aslan M, Dogan S (2011) Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease. J Proteomics 74(11):2274–2288

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown RH Jr (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotropic lateral sclerosis. Ann Neurol 42(4):644–654

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS, Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21(2):330–334

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87(4):1620–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beeckmans S, Kanarek L (1983) The modification with tetranitromethane of an essential tyrosine in the active site of pig fumarase. Biochim Biophys Acta 743:370–378

    Article  CAS  PubMed  Google Scholar 

  • Betz JF, Yu WW, Cheng Y, White IM, Rubloff GW (2014) Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys 16(6):2224–2239

    Article  CAS  PubMed  Google Scholar 

  • Bouř P, Keiderling TA (2002) Partial optimization of molecular geometry in normal coordinates and use as a tool for simulation of vibrational spectra. J Chem Phys 117(9):4126–4132

    Article  CAS  Google Scholar 

  • Bouř P, Sopková J, Bednarová L, Maloň P, Keiderling TA (1997) Transfer of molecular property tensors in cartesian coordinates: a new algorithm for simulation of vibrational spectra. J Comput Chem 18(5):646–659

    Article  Google Scholar 

  • Burai R, Ait-Bouziad N, Chiki A, Lashuel HA (2015) Elucidating the role of site-specific nitration of α-synuclein in the pathogenesis of Parkinson’s disease via protein semisynthesis and mutagenesis. J Am Chem Soc 137(15):5041–5052

    Article  CAS  PubMed  Google Scholar 

  • Campolo N, Issoglio FM, Estrin DA, Bartesaghi S, Radi R (2020) 3-Nitrotyrosine and related derivatives in proteins: precursors, radical intermediates and impact in function. Essays Biochem 64(1):111–133

    Article  CAS  PubMed  Google Scholar 

  • Case DA et al (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  • Castro L, Demicheli V, Tortora V, Radi R (2011) Mitochondrial protein tyrosine nitration. Free Radic Res 45(1):37–52

    Article  CAS  PubMed  Google Scholar 

  • Chang C-Y, Chen Y-M, Huang Y-B, Lai C-H, Jeng U-S, Lai Y-H (2019) Nanostructured silver dendrites for photon-induced cysteine dimerization. Sci Rep 9:20174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das M, Gangopadhyay D, Šebestík J, Habartová L, Michal P, Kapitán J, Bouř P (2021) Chiral detection by induced surface-enhanced Raman optical activity. Chem Comm 57:6388–6391. https://doi.org/10.1039/d1cc01504d

    Article  CAS  PubMed  Google Scholar 

  • De Filippis V, Frasson R, Fontana A (2006) 3-Nitrotyrosine as a spectroscopic probe for investigating protein-protein interactions. Protein Sci 15:976–986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM, Trojanowski JQ (2000) Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 157(5):1439–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Félix-Domínguez F, Carrillo-Torres RC, Lucero-Acuña A, Sánchez-Zeferino R, Álvarez-Ramos ME (2019) Seedless synthesis of silver nanoparticles using sunlight and study of the effect of different ratios of precursors. Mater Res Express 6:045067

    Article  CAS  Google Scholar 

  • Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R (2018) Biochemistry of peroxynitrite and protein tyrosine nitration. Chem Rev 118(3):1338–1408

    Article  CAS  PubMed  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Prot Res 35(3):161–214

    Article  CAS  Google Scholar 

  • Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature Rev Drug Discovery 20:689–709

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  • Furth AJ, Hope DB (1970) Studies on the chemical modification of the tyrosine residue in bovine neurophysin-II. Biochem J 116:545–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giasson BI, Duda JE, Murray IVJ, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM-Y (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989

    Article  CAS  PubMed  Google Scholar 

  • Graham D, Thompson DG, Smith WE, Faulds K (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3(9):548–551

    Article  CAS  PubMed  Google Scholar 

  • Guerrini L, Graham D (2012) Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem Soc Rev 41:7085–7107

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Paliwal VK, Babu GN (2021) Serum fractalkine and 3-nitrotyrosine levels correlate with disease severity in Parkinson’s disease: a pilot study. Metab Brain Dis. https://doi.org/10.1007/s11011-021-00801-9

    Article  PubMed  Google Scholar 

  • Hamissa MF, Niederhafner P, Šestáková H, Šafařík M, Hadravová R, Šebestík J (2022) Neutral and charged forms of inubosin B in aqueous solutions at different pH and on the surface of Ag nanoparticles. J Mol Struct 1250(2):131828

    Article  CAS  Google Scholar 

  • Heinz H, Farmer BL, Naik RR (2008) Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials. J Phys Chem C 112:17281–17290

    Article  CAS  Google Scholar 

  • Heinz H, Farmer BL, Pandey RB, Slocik JM, Patnaik SS, Pachter R, Naik RR (2009) Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution. J Am Chem Soc 131:9704–9714

    Article  CAS  PubMed  Google Scholar 

  • Huang GG, Han XX, Hossain MK, Kitahama Y, Ozaki Y (2010) A study of glutathione molecules adsorbed on silver surfaces under different chemical environments by surface-enhanced Raman scattering in combination with the heat-induced sensing method. Appl Spectrosc 64(10):1100–1108

    Article  CAS  PubMed  Google Scholar 

  • Huang CL, Chen SH, Wu CY, Sie YS, Kao PC (2019) Influence of the silver nanocrystal shape on the luminous efficiency of blue-emitting polymer light-emitting diodes. Langmuir 35(47):15114–15120

    Article  CAS  PubMed  Google Scholar 

  • Jalili R, Dastborhan M, Chenaghlou S, Khataee A (2020) Incorporating of gold nanoclusters into metal-organic frameworks for highly sensitive detection of 3-nitrotyrosine as an oxidative stress biomarker. J Photochem Photobiol A 391:112370

    Article  CAS  Google Scholar 

  • Ježek J, Hlaváček J, Šebestík J (2017) Applications for treatment of neurodegenerative diseases. Prog Drug Res 72:99–134

    Article  CAS  Google Scholar 

  • Jing H, Zhang Q, Large N, Yu C, Blom DA, Nordlander P, Wang H (2014) Tunable plasmonic nanoparticles with catalytically active high-index facets. Nano Lett 14(6):3674–3682

    Article  CAS  PubMed  Google Scholar 

  • Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans A 2(5):799–805

    Article  Google Scholar 

  • Kleinman SL, Frontiera RR, Henry AI, Dieringer JA, Van Duyne RP (2013) Creating, characterizing and controlling chemistry with SERS hot spots. Phys Chem Chem Phys 15(1):21–36

    Article  CAS  PubMed  Google Scholar 

  • Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape H-C, König S, Roeber S, Jessen F, Klockgether T, Korte M, Heneka MT (2011) Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 71(5):833–844

    Article  CAS  PubMed  Google Scholar 

  • Kurouski D, Van Duyne RP (2015) In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Anal Chem 87(5):2901–2906

    Article  CAS  PubMed  Google Scholar 

  • Kurouski D, Lee H, Roschangar F, Senanayake Ch (2017) Surface-enhanced Raman spectroscopy: from concept to practical application. Spectroscopy 32(11):36–44

    CAS  Google Scholar 

  • Larsen MR, Trelle MB, Thingholm TE, Jensen ON (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40(6):790–798

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Choe IR, Kim N-K, Kim W-J, Jang H-S, Lee Y-S, Nam KT (2016) Water-floating giant nanosheets from helical peptide pentamers. ACS Nano 10(9):8263–8270

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Ju M, Cho OH, Kim Y, Nam KT (2019) Tyrosine-rich peptides as a platform for assembly and material synthesis. Adv Sci 6:1801255

    Article  CAS  Google Scholar 

  • Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107(24):5723–5727

    Article  CAS  Google Scholar 

  • Li Y-T, Li D-W, Cao Y, Long Y-T (2015) Label-free in-situ monitoring of protein tyrosine nitration in blood by surface-enhanced Raman spectroscopy. Biosens Bioelectron 69:1–7

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhou P, Da H, Jia H, Bai F, Hu G, Zhang B, Fang J (2019) An Azo coupling strategy for protein 3-nitrotyrosine derivatization. Chem Eur J 25:11228–11232

    CAS  PubMed  Google Scholar 

  • Madkour LH (2019) Function of reactive oxygen species (ROS) inside the living organisms and sources of oxidants. J Glob Pharma Technol 2(2):1–23

    Google Scholar 

  • Martins GV, Marques AC, Fortunato E, Sales MGF (2018) Wax-printed paper-based device for direct electrochemical detection of 3-nitrotyrosine. Electrochim Acta 284:60–68

    Article  CAS  Google Scholar 

  • Martins GV, Marques AC, Fortunato E, Sales MGF (2020) Paper-based (bio)sensor for label-free detection of 3-nitrotyrosine in human urine samples using molecular imprinted polymer. Sens Bio-Sens Res 28:100333

    Article  Google Scholar 

  • Martinsson E, Shahjamali MM, Large N, Zaraee N, Schatz GC, Aili D, Mirkin CA (2015) Influence of surfactant bilayers on the refractive index sensitivity and catalytic properties of anisotropic gold nanoparticles. Small 12(3):330–342

    Article  PubMed  CAS  Google Scholar 

  • Meade RM, Fairlie DP, Mason JM (2019) Alpha-synuclein structure and Parkinson’s disease—lessons and emerging principles. Mol Neurodegener 14:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and Study of Silver Nanoparticles. J Chem Educ 84(2):322–325. https://doi.org/10.1021/ed084p322

    Article  Google Scholar 

  • Mulvihill MJ, Ling XY, Henzie J, Yang P (2010) Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J Am Chem Soc 132(1):268–274

    Article  CAS  PubMed  Google Scholar 

  • Niederhafner P, Šafařík M, Brichtová E, Šebestík J (2016) Rapid acidolysis of benzyl group as a suitable approach for synthesis of peptides naturally produced by oxidative stress and containing 3-nitrotyrosine. Amino Acids 48(4):1087–1098

    Article  CAS  PubMed  Google Scholar 

  • Niederhafner P, Šafařík M, Neburková J, Keiderling TA, Bouř P, Šebestík J (2021) Monitoring peptide tyrosine nitration by spectroscopic methods. Amino Acids 53:517–532

    Article  CAS  PubMed  Google Scholar 

  • Oueslati A, Fournier M, Lashuel HA (2010) Role of post-translational modifications in modulating of structure, function and toxicity of alpha-synuclein. Implications for Parkinson’s disease pathogenesis and therapies. Progress Brain Res 183(C):115–145

    Article  CAS  Google Scholar 

  • Özmetin C, Çopur M, Kocakerim MM, Yapici S (2001) Crystallization of silver nitrate from saturated silver nitrate solution in nitric acid. Indian J Chem Technol 8:112–119

    Google Scholar 

  • Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54(23):16533–16539

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pezzotti G, Boschetto F, Ohgitani E, Fujita Y, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Nishimura I, Mazda O (2021) Mechanisms of instantaneous inactivation of SARS-CoV-2 by silicon nitride bioceramic. Mater Today Bio 12:100144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101(12):4003–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46(2):550–559

    Article  CAS  PubMed  Google Scholar 

  • Reynolds MR, Berry RW, Binder LI (2005) Site specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: Implications for Alzheimer’s disease. Biochemistry 44(5):1690–1700

    Article  CAS  PubMed  Google Scholar 

  • Ruud K, Thorvaldsen AJ (2009) Theoretical approaches to the calculation of Raman optical activity spectra. Chirality 21:E54–E67

    Article  CAS  PubMed  Google Scholar 

  • Rycenga M, Langille MR, Personick ML, Ozel T, Mirkin CA (2012) Chemically isolating hot spots on concave nanocubes. Nano Lett 12(12):6218–6222

    Article  CAS  PubMed  Google Scholar 

  • Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44(8):1061–1076

    Article  CAS  Google Scholar 

  • Sangsuwan R, Obermeyer AC, Tachachartvanich P, Palaniappan KK, Francis MB (2016) Direct detection of nitrotyrosine-containing proteins using an aniline-based oxidative coupling strategy. Chem Commun 52:10036–10039

    Article  CAS  Google Scholar 

  • Seballos L, Richards N, Stevens DJ, Patel M, Kapitzky L, Lokey S, Millhauser G, Zhang JZ (2007) Competitive binding effects on surface-enhanced Raman scattering of peptide molecules. Chem Phys Lett 447(4–6):335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šebestík J, Bouř P (2011) Raman optical activity of methyloxirane gas and liquid. J Phys Chem Lett 2(5):498–502

    Article  CAS  Google Scholar 

  • Šebestík J, Šafařík M, Bouř P (2012) Ferric complexes of 3-hydroxy-4-pyridinones characterized by density functional theory and Raman and UV-vis spectroscopies. Inorg Chem 51(8):4473–4481

    Article  PubMed  CAS  Google Scholar 

  • Seeley KW, Fertig AR, Dufresne CP, Pinho JPC, Stevens SM Jr (2014) Evaluation of a method for nitrotyrosine site identification and relative quantitation using a stable isotope-labeled nitrated spike-in standard and high resolution Fourier transform MS and MS/MS analysis. Int J Mol Sci 15:6265–6285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevcsik E, Trexler AJ, Dunn JM, Rhoades E (2011) Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J Am Chem Soc 133(18):7152–7158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Z, Zhu W, Wang H, Yang Q, Yang S, Liu X, Wang G (2013) Controllable synthesis of concave nanocubes, right bipyramids, and 5-fold twinned nanorods of palladium and their enhanced electrocatalytic performance. J Phys Chem C 117(27):14289–14294

    Article  CAS  Google Scholar 

  • Sharma B, Frontiera RR, Henry AI, Ringe E, Van Duyne RP (2012) SERS: material, applications and the future. Mater Today 15(1–2):16–25

    Article  CAS  Google Scholar 

  • Sharov VS, Dremina ES, Galeva NA, Stobaugh JF, Schoneich C (2010) Reduction of protein/peptide 3-nitrotyrosine to 3-aminotyrosine by sodium dithionite: optimization of reaction conditions for proteomic analysis of 3-nitrotyrosine via fluorogenic and affinity tagging. Free Radical Biol Med 49:S88–S89

    Article  Google Scholar 

  • Sies H (2020) Oxidative stress: concept and some practical aspects. Antioxidants 9(9):852

    Article  CAS  PubMed Central  Google Scholar 

  • Smith E, Dent G (2019) Surface enhanced Raman scattering and surface enhanced resonance Raman scattering. In: Smith E, Dent G (eds) Modern Raman spectroscopy. Wiley, pp 119–149

    Chapter  Google Scholar 

  • Soderling A-S, Hultman L, Delbro D, Hojrup P, Caidahl K (2007) Reduction of the nitro group during sample preparation may cause underestimation of the nitration level in 3-nitrotyrosine immunoblotting. J Chromatogr B 851:277–286

    Article  CAS  Google Scholar 

  • Spears RJ, McMahon C, Chudasama V (2021) Cysteine protecting groups: applications in peptide and protein science. Chem Soc Rev 50:11098–11155

    Article  CAS  PubMed  Google Scholar 

  • Sue Legge F, Nyberg GL, Barrie Peel J (2001) DFT Calculations for Cu-, Ag-, and Au-containing molecules. J Phys Chem A 105(33):7905–7916

    Article  CAS  Google Scholar 

  • Taylor RW, Lee TC, Scherman OA, Esteban R, Aizpurua J, Huang FM, Baumberg JJ, Mahajan S (2011) Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit [n]uril “glue.” ACS Nano 5(5):3878–3887

    Article  CAS  PubMed  Google Scholar 

  • Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Duncan MW (2014) Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. Mass Spectrom Rev 33(4):237–276

    Article  CAS  PubMed  Google Scholar 

  • Tuma R (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J Raman Spectrosc 36(4):307–319

    Article  CAS  Google Scholar 

  • van Haandel L, Killmer J, Li X, Schoneich C, Stobaugh JF (2008) Phenylisothiocyanate as a multiple chemical dimension reagent for the relative quantitation of protein nitrotyrosine. Chromatographia 68:507–516

    Article  CAS  Google Scholar 

  • Vana L, Kanaan NM, Hakala K, Weintraub ST, Binder LI (2011) Peroxynitrite-induced nitrative and oxidative modifications alter tau filament formation. Biochemistry 50(7):1203–1212

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Métraux GS, Millstone JE, Mirkin CA (2008) Mechanistic study of photomediated triangular silver nanoprism growth. J Am Chem Soc 130:8337–8344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Bouř P (2013) Transition polarizability model of induced resonance Raman optical activity. J Comput Chem 34(25):2152–2158

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhang Y, Pöschl U (2010) Quantification of nitrotyrosine in nitrated proteins. Anal Bioanal Chem 397:879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L-C, Lai Y-S, Tsai C-M, Kong Y-T, Lee C-I, Huang C-L (2012) One-pot synthesis of monodispersed silver nanodecahedra with optimal SERS activities using seedless photo-assisted citrate reduction method. J Phys Chem C 116:24292–24300

    Article  CAS  Google Scholar 

  • Yttenberg AJ, Jensen ON (2010) Modification-specific proteomics in plant biology. J Proteomics 73(11):2249–2266

    Article  CAS  Google Scholar 

  • Zhai H, Wang S, Zhou J, Pan J, Tong Y, Mei Q, Zhou Q (2019) A simple and sensitive electrochemical sensor for 3-nitrotyrosine based on electrochemically anodic pretreated glassy carbon electrode in anionic surfactant medium. J Electrochem Soc 166:B1426–B1433

    Article  CAS  Google Scholar 

  • Zhang Q, Large N, Nordlander P, Wang H (2014a) Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS. J Phys Chem Lett 5(2):370–374

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Large N, Wang H (2014b) Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. ACS Appl Mater Interf 6(19):17255–17267

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang Y, Sun H, Maroto R, Brasier AR (2017) Selective affinity enrichment of nitrotyrosine-containing peptides for quantitative analysis in complex samples. J Proteome Res 16(8):2983–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (22-04669S), Research Project RVO 61388963, by European Regional Development Fund; OP RDE; Project: “Chemical biology for drugging undruggable targets (ChemBioDrug)” (No. CZ.02.1.01/0.0/0.0/16_019/0000729). Computational resources were supplied by the project “e-Infrastruktura CZ” (e-INFRA CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic. MT and JŠ thank for support from ORLEN Unipetrol Foundation provided to Mensa Gymnázium. Also, we thank Dr. Jan Ježek, Ph. D. for the corrections of English language. The molecular structures were visualized using program UCSF Chimera (Pettersen et al. 2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Šebestík.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

This paper does not contain any studies with human participants or animals performed by any of the authors. For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2086 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolová, M., Šestáková, H., Truksa, M. et al. Photochemical synthesis of pink silver and its use for monitoring peptide nitration via surface enhanced Raman spectroscopy (SERS). Amino Acids 54, 1261–1274 (2022). https://doi.org/10.1007/s00726-022-03178-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-022-03178-w

Keywords

Navigation