Skip to main content
Log in

Long-term intake of 9-PAHPA or 9-OAHPA modulates favorably the basal metabolism and exerts an insulin sensitizing effect in obesogenic diet-fed mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a large family of endogenous bioactive lipids. To date, most of the studied FAHFAs are branched regioisomers of Palmitic Acid Hydroxyl Stearic Acid (PAHSA) that were reported to possess anti-diabetic and anti-inflammatory activity in humans and rodents. Recently, we have demonstrated that 9-PAHPA or 9-OAHPA intake increased basal metabolism and enhanced insulin sensitivity in healthy control diet-fed mice but induced liver damage in some mice. The present work aims to explore whether a long-term intake of 9-PAHPA or 9-OAHPA may have similar effects in obesogenic diet-fed mice.

Methods

C57Bl6 mice were fed with a control or high fat-high sugar (HFHS) diets for 12 weeks. The HFHS diet was supplemented or not with 9-PAHPA or 9-OAHPA. Whole-body metabolism was explored. Glucose and lipid metabolism as well as mitochondrial activity and oxidative stress status were analyzed.

Results

As expected, the intake of HFHS diet led to obesity and lower insulin sensitivity with minor effects on liver parameters. The long-term intake of 9-PAHPA or 9-OAHPA modulated favorably the basal metabolism and improved insulin sensitivity as measured by insulin tolerance test. On the contrary to what we have reported previously in healthy mice, no marked effect for these FAHFAs was observed on liver metabolism of obese diabetic mice.

Conclusion

This study indicates that both 9-PAHPA and 9-OAHPA may have interesting insulin-sensitizing effects in obese mice with lower insulin sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384(9945):766–781. https://doi.org/10.1016/S0140-6736(14)60460-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alberti KG, Zimmet P, Shaw J, Group IDFETFC (2005) The metabolic syndrome–a new worldwide definition. Lancet 366(9491):1059–1062. https://doi.org/10.1016/S0140-6736(05)67402-8

    Article  Google Scholar 

  3. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R, Committee IDFDA (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  4. Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besancon S, Bommer C, Esteghamati A, Ogurtsova K, Zhang P, Colagiuri S (2020) Global and regional estimates and projections of diabetes-related health expenditure: results from the International Diabetes Federation Diabetes Atlas, edition. Diabetes Res Clin Pract 162:108072. https://doi.org/10.1016/j.diabres.2020.108072

    Article  PubMed  Google Scholar 

  5. Kim KH, Lee MS (2018) Pathogenesis of nonalcoholic steatohepatitis and hormone-based therapeutic approaches. Front Endocrinol (Lausanne) 9:485. https://doi.org/10.3389/fendo.2018.00485

    Article  Google Scholar 

  6. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346(16):1221–1231. https://doi.org/10.1056/NEJMra011775

    Article  CAS  PubMed  Google Scholar 

  7. Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, Patel RT, Lee J, Chen S, Peroni OD, Dhaneshwar AS, Hammarstedt A, Smith U, McGraw TE, Saghatelian A, Kahn BB (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159(2):318–332. https://doi.org/10.1016/j.cell.2014.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Balas L, Feillet-Coudray C, Durand T (2018) Branched fatty acyl esters of hydroxyl fatty acids (FAHFAs), appealing beneficial endogenous fat against obesity and type-2 diabetes. Chemistry 24(38):9463–9476. https://doi.org/10.1002/chem.201800853

    Article  CAS  PubMed  Google Scholar 

  9. Kuda O, Brezinova M, Rombaldova M, Slavikova B, Posta M, Beier P, Janovska P, Veleba J, Kopecky J Jr, Kudova E, Pelikanova T, Kopecky J (2016) Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties. Diabetes 65(9):2580–2590. https://doi.org/10.2337/db16-0385

    Article  CAS  PubMed  Google Scholar 

  10. Bandak B, Yi L, Roper MG (2018) Microfluidic-enabled quantitative measurements of insulin release dynamics from single islets of Langerhans in response to 5-palmitic acid hydroxy stearic acid. Lab Chip 18(18):2873–2882. https://doi.org/10.1039/c8lc00624e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benlebna M, Balas L, Bonafos B, Pessemesse L, Vigor C, Grober J, Bernex F, Fouret G, Paluchova V, Gaillet S, Landrier JF, Kuda O, Durand T, Coudray C, Casas F, Feillet-Coudray C (2020) Long-term high intake of 9-PAHPA or 9-OAHPA increases basal metabolism and insulin sensitivity but disrupts liver homeostasis in healthy mice. J Nutr Biochem 79:108361. https://doi.org/10.1016/j.jnutbio.2020.108361

    Article  CAS  PubMed  Google Scholar 

  12. Paluchova V, Oseeva M, Brezinova M, Cajka T, Bardova K, Adamcova K, Zacek P, Brejchova K, Balas L, Chodounska H, Kudova E, Schreiber R, Zechner R, Durand T, Rossmeisl M, Abumrad NA, Kopecky J, Kuda O (2020) Lipokine 5-PAHSA is regulated by adipose triglyceride lipase and primes adipocytes for de novo lipogenesis in mice. Diabetes 69(3):300–312. https://doi.org/10.2337/db19-0494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balas L, Bertrand-Michel J, Viars F, Faugere J, Lefort C, Caspar-Bauguil S, Langin D, Durand T (2016) Regiocontrolled syntheses of FAHFAs and LC-MS/MS differentiation of regioisomers. Org Biomol Chem 14(38):9012–9020. https://doi.org/10.1039/c6ob01597b

    Article  CAS  PubMed  Google Scholar 

  14. Marvyn PM, Bradley RM, Mardian EB, Marks KA, Duncan RE (2016) Data on oxygen consumption rate, respiratory exchange ratio, and movement in C57BL/6J female mice on the third day of consuming a high-fat diet. Data Brief 7:472–475. https://doi.org/10.1016/j.dib.2016.02.066

    Article  PubMed  PubMed Central  Google Scholar 

  15. Coudray C, Fouret G, Lambert K, Ferreri C, Rieusset J, Blachnio-Zabielska A, Lecomte J, Ebabe Elle R, Badia E, Murphy MP, Feillet-Coudray C (2016) A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats. Br J Nutr 115(7):1155–1166. https://doi.org/10.1017/S0007114515005528

    Article  CAS  PubMed  Google Scholar 

  16. Standish RA, Cholongitas E, Dhillon A, Burroughs AK, Dhillon AP (2006) An appraisal of the histopathological assessment of liver fibrosis. Gut 55(4):569–578. https://doi.org/10.1136/gut.2005.084475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sunderman FW Jr, Marzouk A, Hopfer SM, Zaharia O, Reid MC (1985) Increased lipid peroxidation in tissues of nickel chloride-treated rats. Ann Clin Lab Sci 15(3):229–236

    CAS  PubMed  Google Scholar 

  18. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212. https://doi.org/10.1016/0003-2697(80)90139-6

    Article  CAS  PubMed  Google Scholar 

  19. Faure P, Lafond J (1995) Measurement of plasma sulfhydryl and carbonyl groups as a possible indicator of protein oxidation. In: Favier A, Cadet J, Kalyanaraman B, Fontecave M, Pierre J (eds) Analysis of Free Radicals in Biological Systems. Birkhauser Verlag Basel, Switzerland, pp 237–248

    Chapter  Google Scholar 

  20. Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195(1):133–140

    Article  CAS  PubMed  Google Scholar 

  21. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121. https://doi.org/10.1016/s0076-6879(84)05015-1

    Article  CAS  PubMed  Google Scholar 

  22. Marklund S (1976) Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase. J Biol Chem 251(23):7504–7507

    Article  CAS  PubMed  Google Scholar 

  23. Dupuy A, Le Faouder P, Vigor C, Oger C, Galano JM, Dray C, Lee JC, Valet P, Gladine C, Durand T, Bertrand-Michel J (2016) Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC-MS/MS in various biological samples. Anal Chim Acta 921:46–58. https://doi.org/10.1016/j.aca.2016.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, Cabello G, Cristol JP, Coudray C (2009) Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic Biol Med 46(5):624–632

    Article  CAS  PubMed  Google Scholar 

  25. Srere P (1969) Citrate synthase. Methods Enzymol 13:3–11

    Article  CAS  Google Scholar 

  26. Janssen AJ, Trijbels FJ, Sengers RC, Smeitink JA, van den Heuvel LP, Wintjes LT, Stoltenborg-Hogenkamp BJ, Rodenburg RJ (2007) Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem 53(4):729–734. https://doi.org/10.1373/clinchem.2006.078873

    Article  CAS  PubMed  Google Scholar 

  27. Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228(1):35–51. https://doi.org/10.1016/0009-8981(94)90055-8

    Article  CAS  PubMed  Google Scholar 

  28. Wharton D, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10:245–250

    Article  CAS  Google Scholar 

  29. Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingre HE, Berger R, van den Berg IE (2001) Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest 108(3):457–465. https://doi.org/10.1172/JCI11294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rabasa-Lhoret R, Laville M (2001) How to measure insulin sensitivity in clinical practice? Diabetes Metab 27(2 Pt 2):201–208

    CAS  PubMed  Google Scholar 

  31. Levene AP, Kudo H, Armstrong MJ, Thursz MR, Gedroyc WM, Anstee QM, Goldin RD (2012) Quantifying hepatic steatosis—more than meets the eye. Histopathology 60(6):971–981. https://doi.org/10.1111/j.1365-2559.2012.04193.x

    Article  PubMed  Google Scholar 

  32. Gerspach C, Imhasly S, Klingler R, Hilbe M, Hartnack S, Ruetten M (2017) Variation in fat content between liver lobes and comparison with histopathological scores in dairy cows with fatty liver. BMC Vet Res 13(1):98. https://doi.org/10.1186/s12917-017-1004-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Manne V, Handa P, Kowdley KV (2018) Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis 22(1):23–37. https://doi.org/10.1016/j.cld.2017.08.007

    Article  PubMed  Google Scholar 

  34. Ferramosca A, Conte A, Damiano F, Siculella L, Zara V (2014) Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats. Eur J Nutr 53(4):1103–1114. https://doi.org/10.1007/s00394-013-0613-8

    Article  CAS  PubMed  Google Scholar 

  35. Lim J, Park HS, Kim J, Jang YJ, Kim JH, Lee Y, Heo Y (2020) Depot-specific UCP1 expression in human white adipose tissue and its association with obesity-related markers. Int J Obes (Lond) 44(3):697–706. https://doi.org/10.1038/s41366-020-0528-4

    Article  CAS  Google Scholar 

  36. Tan D, Ertunc ME, Konduri S, Zhang J, Pinto AM, Chu Q, Kahn BB, Siegel D, Saghatelian A (2019) Discovery of FAHFA-containing triacylglycerols and their metabolic regulation. J Am Chem Soc 141(22):8798–8806. https://doi.org/10.1021/jacs.9b00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pflimlin E, Bielohuby M, Korn M, Breitschopf K, Lohn M, Wohlfart P, Konkar A, Podeschwa M, Barenz F, Pfenninger A, Schwahn U, Opatz T, Reimann M, Petry S, Tennagels N (2018) Acute and repeated treatment with 5-PAHSA or 9-PAHSA isomers does not improve glucose control in mice. Cell Metab 28(2):217–227.e213

    Article  CAS  PubMed  Google Scholar 

  38. Kuda O (2018) On the complexity of PAHSA research. Cell Metab 28(4):541–542. https://doi.org/10.1016/j.cmet.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  39. Syed I, Lee J, Peroni OD, Yore MM, Moraes-Vieira PM, Santoro A, Wellenstein K, Smith U, McGraw TE, Saghatelian A, Kahn BB (2018) Methodological issues in studying PAHSA biology: masking PAHSA effects. Cell Metab 28(4):543–546. https://doi.org/10.1016/j.cmet.2018.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kolar MJ, Konduri S, Chang T, Wang H, McNerlin C, Ohlsson L, Harrod M, Siegel D, Saghatelian A (2019) Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals. J Biol Chem 294(27):10698–10707. https://doi.org/10.1074/jbc.RA118.006956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burchfield JG, Kebede MA, Meoli CC, Stockli J, Whitworth PT, Wright AL, Hoffman NJ, Minard AY, Ma X, Krycer JR, Nelson ME, Tan SX, Yau B, Thomas KC, Wee NKY, Khor EC, Enriquez RF, Vissel B, Biden TJ, Baldock PA, Hoehn KL, Cantley J, Cooney GJ, James DE, Fazakerley DJ (2018) High dietary fat and sucrose results in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. J Biol Chem 293(15):5731–5745. https://doi.org/10.1074/jbc.RA117.000808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schneider K, Valdez J, Nguyen J, Vawter M, Galke B, Kurtz TW, Chan JY (2016) Increased energy expenditure, Ucp1 expression, and resistance to diet-induced obesity in mice lacking nuclear factor-erythroid-2-related transcription factor-2 (Nrf2). J Biol Chem 291(14):7754–7766. https://doi.org/10.1074/jbc.M115.673756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou P, Santoro A, Peroni OD, Nelson AT, Saghatelian A, Siegel D, Kahn BB (2019) PAHSAs enhance hepatic and systemic insulin sensitivity through direct and indirect mechanisms. J Clin Invest 129(10):4138–4150. https://doi.org/10.1172/JCI127092

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang YM, Liu HX, Fang NY (2018) 9-PAHSA promotes browning of white fat via activating G-protein-coupled receptor 120 and inhibiting lipopolysaccharide / NF-kappa B pathway. Biochem Biophys Res Commun 506(1):153–160. https://doi.org/10.1016/j.bbrc.2018.09.050

    Article  CAS  PubMed  Google Scholar 

  45. Zou T, Wang B, Yang Q, de Avila JM, Zhu MJ, You J, Chen D, Du M (2018) Raspberry promotes brown and beige adipocyte development in mice fed high-fat diet through activation of AMP-activated protein kinase (AMPK) alpha1. J Nutr Biochem 55:157–164. https://doi.org/10.1016/j.jnutbio.2018.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ishibashi J, Seale P (2015) Functions of Prdm16 in thermogenic fat cells. Temperature (Austin) 2(1):65–72. https://doi.org/10.4161/23328940.2014.974444

    Article  Google Scholar 

  47. Fernandes-Santos C, Carneiro RE, de Souza ML, Aguila MB, Mandarim-de-Lacerda CA (2009) Pan-PPAR agonist beneficial effects in overweight mice fed a high-fat high-sucrose diet. Nutrition 25(7–8):818–827. https://doi.org/10.1016/j.nut.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  48. Syed I, Lee J, Moraes-Vieira PM, Donaldson CJ, Sontheimer A, Aryal P, Wellenstein K, Kolar MJ, Nelson AT, Siegel D, Mokrosinski J, Farooqi IS, Zhao JJ, Yore MM, Peroni OD, Saghatelian A, Kahn BB (2018) Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab 27(2):419–427.e414. https://doi.org/10.1016/j.cmet.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moraes-Vieira PM, Saghatelian A, Kahn BB (2016) GLUT4 expression in adipocytes regulates de novo lipogenesis and levels of a novel class of lipids with antidiabetic and anti-inflammatory effects. Diabetes 65(7):1808–1815. https://doi.org/10.2337/db16-0221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fujii H, Kawada N (2012) Inflammation and fibrogenesis in steatohepatitis. J Gastroenterol 47(3):215–225. https://doi.org/10.1007/s00535-012-0527-x

    Article  CAS  PubMed  Google Scholar 

  51. Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, Federico A, Persico M (2018) Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev 2018:9547613. https://doi.org/10.1155/2018/9547613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clapper JR, Hendricks MD, Gu G, Wittmer C, Dolman CS, Herich J, Athanacio J, Villescaz C, Ghosh SS, Heilig JS, Lowe C, Roth JD (2013) Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am J Physiol Gastrointest Liver Physiol 305(7):G483–495. https://doi.org/10.1152/ajpgi.00079.2013

    Article  CAS  PubMed  Google Scholar 

  53. Wang YM, Liu HX, Fang NY (2018) High glucose concentration impairs 5-PAHSA activity by inhibiting AMP-activated protein kinase activation and promoting nuclear factor-kappa-B-mediated inflammation. Front Pharmacol 9:1491. https://doi.org/10.3389/fphar.2018.01491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Biocampus for animal staff from Metamus DMEM facility which belongs to RAM, Montpellier animal facilities network, for technical support and expertise for metabolism phenotyping, and for RHEM Facility for histology/immunohistology experiments. We acknowledge SIRIC Montpellier Cancer (Grant INCa_Inserm_DGOS_12553) to RHEM, and Metamontp platform supported by the European fund for the regional development of Occitanie (FEDER). The authors express their deep acknowledgements to Guillaume Reversat, Amandine Rocher and Camille Oger for their technical aid in the isoprostanoid analysis, Charlene Couturier for the WAT qPCR analysis and Annabelle Tavernier for the GLP-1 analysis.

Funding

Melha Benlebna thanks the Algerian Ministry of Higher Education and Scientific Research for the financial support of her PhD program. The authors also acknowledge the financial support of the French Lipid Nutrition Group, and the Czech Science Foundation (20-00317S). The authors are also grateful for the National Research Institute for Agriculture, Food and Environment (INRAE), in particular the Human Nutrition Department (Alim-H department) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions were as follows: study design (CC, FC, CF-C), FAHFAs synthesis (LB, MB), data collection (MB, BB, LP, JG, GF, CV, SG, OK), statistical analysis (CC, MB, FC, CF-C), data interpretation (MB, CC, FC, FB, SG, OK, TD, LB, CF-C), manuscript preparation (MB, CC, OK, LB, FC, CF-C), literature search (MB, CC, FC, CF-C) and funds collection (CC, OK, FC, CF-C). All the authors have read and approved the final version of this manuscript.

Corresponding author

Correspondence to Christine Feillet-Coudray.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benlebna, M., Balas, L., Bonafos, B. et al. Long-term intake of 9-PAHPA or 9-OAHPA modulates favorably the basal metabolism and exerts an insulin sensitizing effect in obesogenic diet-fed mice. Eur J Nutr 60, 2013–2027 (2021). https://doi.org/10.1007/s00394-020-02391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02391-1

Keywords

Navigation