Skip to main content
Log in

In-situ plasma monitoring by optical emission spectroscopy during pulsed laser deposition of doped Lu2O3

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The control and arguably the tailoring aspect of technologies like pulsed laser deposition (PLD) rises from understanding the chemistry hidden by the laser generated plasma. With the continuous transition towards thin films with complex structures and geometries, the comprehension of the fundamental processes during the film deposition becomes critical. During the PLD of Mo and Eu-doped Lu2O3, optical emission spectroscopy was implemented for in-situ plasma monitoring. The spatial distribution of individual elements revealed the structuring of a stoichiometric plasma while the formation of LuO molecule within the plasma plume is seen as being induced by the addition of a minimum 1 Pa of O2. The energy of the ejected particles was controlled through doping and O2 pressure. The effect of O2 pressure over the plasma energy revealed a transition from an atomic dominated region towards a molecular dominated one. The properties of the resulted films were analyzed by XRD, AFM, and photoluminescence techniques and show a strong correlation between the dynamical regime of the plasma and their structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Schou, Appl. Surf. Sci. 255, 5191–5198 (2009)

    Article  ADS  Google Scholar 

  2. A.A. Puretzky, D.B. Geohegan, R.E. Haufler, R.L. Hettich, X.Y. Zheng, R.N. Compton, AIP Conf. Proc. 288, 365–374 (1993)

    Article  ADS  Google Scholar 

  3. S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, C. Focsa, Appl. Surf. Sci. 418, 594–600 (2017)

    Article  ADS  Google Scholar 

  4. M. Skočić, D. Dojić, S. Bukvić, J. Quant. Spectrosc. Radiat. Transf. 227, 57–62 (2019)

    Article  ADS  Google Scholar 

  5. S.A. Irimiciuc, S. Chertopalov, V. Craciun, M. Novotný, J. Lancok, Plasma Process. Polym. 1, 1–9 (2020)

    Google Scholar 

  6. C. Aragón, J.A. Aguilera, Spectrochim. acta Part B At. Spectrosc. 63, 893–916 (2008)

    Article  ADS  Google Scholar 

  7. S.A. Irimiciuc, B.C. Hodoroaba, G. Bulai, S. Gurlui, V. Craciun, Spectrochim. Acta - Part B At. Spectrosc. 165, 105774 (2020)

    Article  Google Scholar 

  8. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, Appl. Phys. 93, 2380–2388 (2003)

    Article  Google Scholar 

  9. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Phys. D. Appl. Phys. 35, 2935–2938 (2002)

    Article  Google Scholar 

  10. S. Canulescu, E.L. Papadopoulou, D. Anglos, T. Lippert, C.W. Schneider, A. Wokaun, J Appl. Phys. 105, 063107 (2009)

    Article  ADS  Google Scholar 

  11. S.A. Irimiciuc, P.E. Nica, M. Agop, C. Focsa, Appl. Surf. Sci. 506, 144926 (2020)

    Article  Google Scholar 

  12. D.B. Geohegan, A.A. Puretzky, Appl. Surf. Sci. 96–98, 131–138 (1996)

    Article  ADS  Google Scholar 

  13. A. Ojeda-G-P, C.W. Schneider, M. Döbeli, T. Lippert, A. Wokaun, J. Appl. Phys. 121, 135306 (2017)

    Article  ADS  Google Scholar 

  14. M. Bator, Y. Hu, M. Esposito, C.W. Schneider, T. Lippert, A. Wokaun, Appl. Surf. Sci. 258, 9355–9358 (2012)

    Article  ADS  Google Scholar 

  15. A.A. Puretzky, D.B. Geohegan, X. Fan, S.J. Pennycook, Appl. Phys. A Mater. Sci. Proc. 70, 153–160 (2000)

    Article  ADS  Google Scholar 

  16. P. Darmawan, P.S. Chia, P.S. Lee, J. Phys. Conf. Ser. 61, 046 (2007)

    Article  Google Scholar 

  17. J.M.J. Lopes, M. Roeckerath, T. Heeg, E. Rije, J. Schubert, S. Mantl, V.V. Afanas, S. Shamuilia, A. Stesmans, Y. Jia, D.G. Schlom, Appl. Phys. Lett. 89, 311–318 (2006)

    Article  Google Scholar 

  18. P. Mandal, U.P. Singh, S. Roy, IOP Conf. Ser. Mater. Sci. Eng. 872, 012062 (2020)

    Article  Google Scholar 

  19. D. Sengupta, S. Miller, Z. Marton, F. Chin, V. Nagarkar, G. Pratx, Adv. Healthc. Mater. 4, 2064–2070 (2015)

    Article  Google Scholar 

  20. X.J. Liu, H.L. Li, R.J. Xie, N. Hirosaki, X. Xu, L.P. Huang, J. Lumin. 127, 469–473 (2007)

    Article  Google Scholar 

  21. J. Wang, Q. Liu, Q. Liu, J. Mater. Chem. 15, 4141–4146 (2005)

    Article  Google Scholar 

  22. S. Bär, G. Huber, J. Gonzalo, A. Perea, A. Climent, F. Paszti, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 105, 30–33 (2003)

    Article  Google Scholar 

  23. K. Kaminaga, D. Oka, T. Hasegawa, T. Fukumura, ACS Omega 3(10), 12501–12504 (2018)

    Article  Google Scholar 

  24. S.A. Cooke, C. Krumrey, M.C.L. Gerry, J. Mol. Spectrosc. 267, 108–111 (2011)

    Article  ADS  Google Scholar 

  25. A.K. Pradhan, K. Zhang, S. Mohanty, J. Dadson, D. Hunter, B. Loutts, J. Appl. Phys. 97, 023513 (2005)

    Article  ADS  Google Scholar 

  26. V. Petrícek, M. Dušek, L. Palatinus, Zeitschrift Fur Krist. 229, 345–352 (2014)

    Google Scholar 

  27. R.W. Cheary, A.A. Coelho, J.P. Cline, J. Res. Natl. Inst. Stand. Technol. 109(1), 1 (2004)

    Article  Google Scholar 

  28. A. Pavlik, S.V. Ushakov, A. Navrotsky, C.J. Benmore, R.J.K. Weber, J. Nucl. Mater. 495, 385–391 (2017)

    Article  ADS  Google Scholar 

  29. A. Belkly, M. Helderman, V.L. Karen, P. Ulkch, Acta Crystallogr. Sect. B Struct. Sci. 58, 364–369 (2002)

    Article  Google Scholar 

  30. M.V. Abrashev, N.D. Todorov, J. Geshev, J. Appl. Phys. 116, 103508 (2014)

    Article  ADS  Google Scholar 

  31. W.B. White, V.G. Keramidas, Spectrochim. Acta 28, 501–509 (1972)

    Article  Google Scholar 

  32. M. Dieterle, G. Mestl, Phys. Chem. Chem. Phys. 4, 822–826 (2002)

    Article  Google Scholar 

  33. D.R. Lide, Handbook of Chemistry and Physics, National Institute of Standards and Technology (CRC Press, 2005)

    Google Scholar 

  34. A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team, NIST atomic spectra database lines form, NIST At. Spectra Database (Ver. 5.2) [Online]. 2014.

  35. P. Płóciennik, D. Guichaoua, A. Zawadzka, A. Korcala, J. Strzelecki, P. Trzaska, B. Sahraoui, Opt. Quant. Electron. 48, 277 (2016)

    Article  Google Scholar 

  36. N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell, Phys. Rev. B. 69, 054102 (2004)

    Article  ADS  Google Scholar 

  37. S.A. Irimiciuc, S. Gurlui, M. Agop, Appl. Phys. B. 125, 1–11 (2019)

    Article  Google Scholar 

  38. T. Belmonte, C. Noël, T. Gries, J. Martin, G. Henrion, Plasma Sources Sci. Technol. 24, 064003 (2015)

    Article  ADS  Google Scholar 

  39. D.W. Hahn, N. Omenetto, Appl. Spectrosc. 64, 335–366 (2010)

    Article  ADS  Google Scholar 

  40. C. Martinet, A. Pillonnet, J. Lancok, C. Garapon, J. Lumin. 126, 807–816 (2007)

    Article  Google Scholar 

  41. Q.I. Yang, J. Zhao, L. Zhang, M. Dolev, A.D. Fried, A.F. Marshall, S.H. Risbud, A. Kapitulnik, Appl. Phys. Lett. 104(8), 082402 (2014)

    Article  ADS  Google Scholar 

  42. C.C.S. Pedroso, J.M. Carvalho, L.C.V. Rodrigues, J. Hölsä, H.F. Brito, ACS Appl. Mater. Interf. 8, 19593–19604 (2016)

    Article  Google Scholar 

  43. K. Binnemans, Coord. Chem. Rev. 295, 1–45 (2015)

    Article  Google Scholar 

  44. M. Xu, W. Zhang, N. Dong, Y. Jiang, Y. Tao, M. Yin, J. Solid State Chem. 178, 477–482 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Czech Science Foundation, project 18-17834S, by Romanian Ministry of Education and Research, under Romanian National Nucleu Program LAPLAS VI – contract n.16N/2019, ELI-RO_2020_12 and Postdoctoral Project PD 145 ⁄ 2020. We acknowledge the Operational Program Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SI, MN; methodology: SI, MN, JM-C, JL; formal analysis and investigation: JM-C, SC, LF, ŠH, MP, TZ, KK; writing – original draft preparation: SI, MN, JM-C, JL; writing – review and editing: SC, KK, JL, MN; Resources: JL, MN; supervision: JL, MN.

Corresponding author

Correspondence to S. Irimiciuc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 68 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irimiciuc, S., More-Chevalier, J., Chertpalov, S. et al. In-situ plasma monitoring by optical emission spectroscopy during pulsed laser deposition of doped Lu2O3. Appl. Phys. B 127, 140 (2021). https://doi.org/10.1007/s00340-021-07689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07689-4

Navigation