Skip to main content
Log in

Backward lasing of singly ionized nitrogen ions pumped by femtosecond laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the observation of backward lasing at 391.4 nm of nitrogen ions pumped by linearly polarized intense femtosecond pulses at 800 nm. The strongly enhanced spectral intensity at 391.4 nm, as well as the amplification of an externally injected backward seeding pulse, confirm that the backward 391.4 nm signal is due to optical amplification in the nitrogen gas plasma. Compared to the forward emission at 391.4 nm, the optimal backward emission is achieved at a lower gas pressure around 10 mbar, which is due to asymmetry of the backward and forward directions rooted in the traveling excitation geometry. Comparison of the signals in pure nitrogen and air revealed a strong quenching effect of the oxygen molecules, preventing backward lasing action in ambient air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, High-gain backward lasing in air. Science 331, 442–445 (2011)

    Article  ADS  Google Scholar 

  2. J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S.L. Chin, Y. Cheng, Z. Xu, High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A 84, 051802(R) (2011)

    Article  ADS  Google Scholar 

  3. J. Yao, W. Chu, Z. Liu, J. Chen, B. Xu, Y. Cheng, An anatomy of strong-field ionization-induced air lasing. Appl. Phys. B 124, 73 (2018)

    Article  Google Scholar 

  4. A. J. Traverso, R. Sanchez-Gonzalez, L. Yuan, K. Wang, D.V. Voronine, A.M. Zheltikov, Y. Rostovtsev, V.A. Sautenkov, A.V. Sokolov, S.W. North, M.O. Scully, Coherence brightened laser source for atmospheric remote sensing. Proc. Natl. Acad. Sci. USA 109, 15185–15190 (2012)

    Article  ADS  Google Scholar 

  5. Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, Self-seeded lasing action of air pumped by 800 nm femtosecond laser pulses. Opt. Express 21, 22791 (2013)

    Article  ADS  Google Scholar 

  6. H. Xu, E. Lotstedt, A. Iwasaki, K. Yamanouchi, Sub-10-fs population inversion in N2 + in air lasing through multiple state coupling. Nat. Commun. 6, 8347 (2015)

    Article  ADS  Google Scholar 

  7. T. Wang, J. Ju, J.F. Daigle, S. Yuan, R. Li, S.L. Chin, Self-seeded forward lasing action from a femtosecond Ti: sapphire laser filament in air. Laser Phys. Lett. 10, 125401 (2013)

    Article  ADS  Google Scholar 

  8. J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, Y. Cheng, Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields. Phys. Rev. Lett. 116, 143007 (2016)

    Article  ADS  Google Scholar 

  9. M. Lei, C. Wu, A. Zhang, Q. Gong, H. Jiang, Population inversion in the rotational levels of the superradiant N2 + pumped by femtosecond laser pulses. Opt. Express 25, 4535 (2017)

    Article  ADS  Google Scholar 

  10. A. Dogariu, R. B. Miles, Lasing in atmospheric air: similarities and differences of oxygen and nitrogen. Frontiers in Optics 2013/Laser Science XXIX, LTh2H.2, Orlando, Florida, 2013 (Laser Science, Orlando, 2013)

  11. Q. Luo, W. Liu, S.L. Chin, Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B 76, 337 (2003)

    Article  ADS  Google Scholar 

  12. A. Laurain, M. Scheller, P. Polynkin, Low-threshold bidirectional air lasing. Phys. Rev. Lett. 113, 253901 (2014)

    Article  ADS  Google Scholar 

  13. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S.L. Chin, A. Baltuška, Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 86, 033831 (2012)

    Article  ADS  Google Scholar 

  14. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Mysyrowicz, Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses. Opt. Express 22, 12750–12759 (2014)

    Article  ADS  Google Scholar 

  15. P. J. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, Y. Liu, Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of remote sensing (BLACK). Opt. Express 22, 29964–29977 (2014)

    Article  ADS  Google Scholar 

  16. P. Ding, E. Oliva, A. Houard, A. Mysyrowicz, Y. Liu, Lasing dynamics of neutral nitrogen molecules in femtosecond filaments. Phys. Rev. A 94, 043824 (2016)

    Article  ADS  Google Scholar 

  17. J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, Z. Xu, Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses. Opt. Express 22, 19005–19013 (2014)

    Article  ADS  Google Scholar 

  18. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, A. Mysyrowicz, Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses. Phys. Rev. Lett. 114, 063003 (2015)

    Article  ADS  Google Scholar 

  19. C. Weitkamp (ed.), Range-resolved optical remote sensing of the atmosphere (Springer, Berlin, 2005)

    Google Scholar 

  20. P. N. Malevich, R. Maurer, D. Kartashov, S. Aliauska, A.A. Lanin, A.M. Zheltikov, M. Marangoni, G. Cerullo, A. Baltuka, A. Puglys, Stimulated raman gas sensing by backward UV lasing from a femtosecond filament. Opt. Lett. 40, 2469–2472 (2015)

    Article  ADS  Google Scholar 

  21. G. Li, C. Jing, B. Zeng, H. Xie, J. Yao, W. Chu, J. Ni, H. Zhang, H. Xu, Y. Cheng, Z. Xu, Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization. Phys. Rev. A 89, 033833 (2014)

    Article  ADS  Google Scholar 

  22. Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, A. Mysyrowicz, Recollision-induced superradiance of ionized nitrogen molecules. Phys. Rev. Lett. 115, 133203 (2015)

    Article  ADS  Google Scholar 

  23. Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E.R. Simpson, E.W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C.L. Arnold, S. Zhuang, V. Tikhonchuk, A. Mysyrowicz, Unexpected sensitivity of nitrogen ions superradiant emission on pump laser wavelength and duration. Phys. Rev. Lett. 119, 203205 (2017)

    Article  ADS  Google Scholar 

  24. J. Kasparian, R. Sauerbrey, S.L. Chin, The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 71, 877–879 (2000)

    Article  ADS  Google Scholar 

  25. A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C.M. Bowden, S.L. Chin, Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B 73, 287–290 (2001)

    Article  ADS  Google Scholar 

  26. S. I. Mitryukovskiy, Y. Liu, A. Houard, A. Mysyrowicz, Re-evaluation of the peak intensity inside a femtosecond laser filament in air. J. Phys. B At. Mol. Opt. Phys. 48, 094003 (2015)

    Article  ADS  Google Scholar 

  27. J. Andreasen, M. Kolesik, Nonlinear propagation of light in structured media: generalized unidirectional pulse propagation equations. Phys. Rev. E 86, 036706 (2012)

    Article  ADS  Google Scholar 

  28. M. Kolesik, J.V. Moloney, Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations. Phys. Rev. E 70, 036604 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (Grant Nos. 11574213, 11904232), Innovation Program of Shanghai Municipal Education Commission (Grant No. 2017-01-07-00-07-E00007), Shanghai Municipal Science and Technology Commission (No. 17060502500), ELITAS (ELI Tools for Advanced Simulation) CZ.02.1.01/0.0/0.0/16-013/0001793 from the European Regional Development Fund. The authors acknowledge the fact that the nonlinear pulse propagation simulation has been performed by Dr. X. H. Gao of Shaoxing University of Science and Technology (China) based on the gUUPE core software developed by Prof. M. Kolesik and his colleagues of Arizona University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Danylo, R., Fan, Z. et al. Backward lasing of singly ionized nitrogen ions pumped by femtosecond laser pulses. Appl. Phys. B 126, 53 (2020). https://doi.org/10.1007/s00340-020-7402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7402-x

Navigation