Skip to main content
Log in

Investigation of nano-microstructural changes in Maastricht limestone after treatment with nanolime suspension

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 09 December 2021

This article has been updated

Abstract

Nanolimes are dispersions of nanosized Ca(OH)2 particles in alcohols often used for the consolidation of various types of cultural heritage objects. The consolidation effect is based on the transformation of Ca(OH)2 into CaCO3 phases during carbonation process. The detection of microstructural changes consequent to a consolidating treatment (essential to evaluate its effectiveness) was approached adopting the innovative combination of two advanced techniques, covering a range in pore size from the nanometric to the millimetric scale: small-angle neutron scattering (SANS) and synchrotron X-ray micro-computed tomography (µ-CT). The changes in the 3D microstructure of samples of Maastricht limestone, a well-known weak stone material considered as a sort of ‘standard’ in cultural heritage conservation studies, pure and treated with nanolime dispersions, have been described in a fully non-invasive fashion, overcoming the limitation of previous approaches. The application of nanolime resulted to have a limited positive effect in reducing the fine porosity. Its time evolution was attributed to the progress of the carbonation reaction. On the contrary, the treatment produced positive effects on the porosity in the size range covered with µ-CT, reducing the pore accessibility between 30 and 65 µm, suggesting an improvement of the mechanical properties. The combined use of SANS and µ-CT represents and novel methodological approach in support of cultural heritage conservation works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. R. van Hees, R. Veiga, Z. Slížková, Mater. Struct. Constr. 50, 1 (2017)

    Google Scholar 

  2. C. Rodriguez-Navarro, E. Ruiz-Agudo, Pure Appl. Chem 90, 523 (2018)

    Google Scholar 

  3. P. Baglioni, D. Chelazzi, R. Giorgi, Nanotechnologies in the Conservation of Cultural Heritage (Springer, Netherlands, Dordrecht, 2015)

    Google Scholar 

  4. G. Ziegenbalg, M. Drdácký, C. Dietze, D. Schuch, Nanomaterials in Architecture and Art Conservation, 1st edn. (Pan Stanford Publishing, Singapore, 2018)

    Google Scholar 

  5. Ö. Cizer, C. Rodriguez-Navarro, E. Ruiz-Agudo, J. Elsen, D. Van Gemert, K. Van Balen, J. Mater. Sci. 47, 6151 (2012)

    ADS  Google Scholar 

  6. P. López-Arce, L.S. Gómez-Villalba, S. Martínez-Ramírez, M. Álvarez de Buergo, R. Fort, Powder Technol. 205, 263 (2011)

    Google Scholar 

  7. S.M. Shih, C.S. Ho, Y.S. Song, J.P. Lin, Ind. Eng. Chem. Res. 38, 1316 (1999)

    Google Scholar 

  8. C. Rodriguez-Navarro, K. Elert, R. Ševčík, Cryst. Eng. Commn. 18, 6594 (2016)

    Google Scholar 

  9. F. Lippmann, in Sedimentary Carbonate Minerals. Minerals, Rocks and Inorganic Materials. Monograph Ser. Theor. Exp. Stud. (Springer, Berlin, 1973) pp. 5–96

  10. C. D. Wim, D. Michiel, D. Dreesen, F. M. Werner, and N. G. Timo, in International Conference Heritage, Weather. Conserv. (2006), p. 9

  11. A. Radulescu, N.K. Szekely, M.-S. Appavou, J. Large-Scale Res. Facil. JLSRF 1, 29 (2015)

    Google Scholar 

  12. A.J. Allen, J. Am. Ceram. Soc. 88, 1367 (2005)

    Google Scholar 

  13. A. Viani, R. Ševčík, M.S. Appavou, A. Radulescu, Appl. Clay Sci. 166, 1 (2018)

    Google Scholar 

  14. A. Viani, K. Sotiriadis, A. Len, P. Šašek, R. Ševčík, Mater. Charact. 116, 33 (2016)

    Google Scholar 

  15. A. Viani, K. Sotiriadis, P. Šašek, M.S. Appavou, Ceram. Int. 42, 16310 (2016)

    Google Scholar 

  16. A.J. Allen, S. Krueger, G.G. Long, H.M. Kerch, H. Hahn, G. Skandan, Nanostructured Mater. 7, 113 (1996)

    Google Scholar 

  17. R. Ševčík, A. Viani, D. Machová, G. Lanzafame, L. Mancini, M.S. Appavou, Sci. Rep. 9, 1 (2019)

    ADS  Google Scholar 

  18. I. Bressler, B.R. Pauw, A.F. Thünemann, J. Appl. Crystallogr. 48, 962 (2015)

    Google Scholar 

  19. P. Staron, A. Schreyer, H. Clemens, S. Mayer (eds.), Neutrons and Synchrotron Radiation in Engineering and Material Science (Wiley-VCH Verlag GmbH, Weinheim, 2017)

    Google Scholar 

  20. P.W. Schmidt, J. Appl. Crystallogr. 24, 414 (1991)

    Google Scholar 

  21. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, San Francisco, 1982)

    MATH  Google Scholar 

  22. G. Porod in Small Angle X-Ray Scatt, ed. by O. Glatter O. Kratky (Academic Press Inc., London 1982), pp.17–51

  23. S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson, Nature 384, 335 (1996)

    ADS  Google Scholar 

  24. P. Cloetensdag, B. Raymondm, B. José, G. Jean-Peirre, S. Michel, J. Phys. D. Appl. Phys. 29, 133 (1996)

    ADS  Google Scholar 

  25. F. Brun, S. Pacilè, A. Accardo, G. Kourousias, D. Dreossi, L. Mancini, G. Tromba, R. Pugliese, Fundam. Informaticae 141, 233 (2015)

    Google Scholar 

  26. F. Brun, L. Massimi, M. Fratini, D. Dreossi, F. Billé, A. Accardo, R. Pugliese, A. Cedola, Adv. Struct. Chem. Imaging 3, 4 (2017)

    Google Scholar 

  27. F. Brun, L. Mancini, P. Kasae, S. Favretto, D. Dreossi, G. Tromba, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 615, 326 (2010)

    ADS  Google Scholar 

  28. A. Viani, K. Sotiriadis, I. Kumpová, L. Mancini, M.S. Appavou, Dent. Mater. 33, 402 (2017)

    Google Scholar 

  29. N. Otsu, I.E.E.E. Trans, Syst. Man. Cybern. 9, 62 (1979)

    Google Scholar 

  30. P. Trtik, M. Soos, B. Münch, A. Lamprou, R. Mokso, M. Stampanoni, Langmuir 27, 12788 (2011)

    Google Scholar 

  31. B. Münch, L. Holzer, J. Am. Ceram. Soc. 91, 4059 (2008)

    Google Scholar 

  32. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Nat. Methods 9, 676 (2012)

    Google Scholar 

  33. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Google Scholar 

  34. V. Pipich, M. Balz, S.E. Wolf, W. Tremel, D. Schwann, J. Am. Chem. Soc. 130, 6879 (2008)

    Google Scholar 

  35. H. Brumberger (ed.), Modern Aspects of Small-Angle Scattering, 1st edn. (Springer Science & Business Media, Berlin, 1995)

    Google Scholar 

  36. R.A. Al-Omary, M. Al-Naddaf, W. Al Sekhaneh, Mediterr Archaeol. Archaeom. 18, 35 (2018)

    Google Scholar 

  37. J. Jang, F.G. Matero, J. Am. Inst. Conserv. 57, 95 (2018)

    Google Scholar 

  38. L.M. Anovitz, D.R. Cole, Rev. Mineral. Geochemistry 80, 61 (2015)

    ADS  Google Scholar 

  39. G. Borsoi, B. Lubelli, R. van Hees, R. Veiga, A. Santos Silva, Constr Build. Mater. 142, 385 (2017)

    Google Scholar 

  40. K. Niedoba, Z. Slížková, D. Frankeová, C. Lara Nunes, I. Jandejsek, Constr. Build. Mater. 133, 51 (2017)

    Google Scholar 

  41. R. Ševčík, P. Mácová, M.P. Estébanez, A. Viani, Constr. Build. Mater. 228, 116802 (2019)

    Google Scholar 

  42. R. Ševčík, P. Šašek, A. Viani, J. Mater. Sci. 53, 4022 (2018)

    ADS  Google Scholar 

  43. M.-B. Coltelli, D. Paolucci, V. Castelvetro, S. Bianchi, E. Mascha, L. Panariello, C. Pesce, J. Weber, A. Lazzeri, Nanomaterials 8, 254 (2018)

    Google Scholar 

  44. J. Otero, V. Starinieri, A.E. Charola, Constr. Build. Mater. 209, 701 (2019)

    Google Scholar 

  45. G. Borsoi, B. Lubelli, R. van Hees, R. Veiga, A.S. Silva, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)

    Google Scholar 

  46. G. Borsoi, B. Lubelli, R. van Hees, R. Veiga, A.S. Silva, L. Colla, L. Fedele, P. Tomasin, Colloids Surfaces A Physicochem. Eng. Asp. 497, 171 (2016)

    Google Scholar 

  47. J. Otero, V. Starinieri, A.E. Charola, G. Taglieri, Constr. Build. Mater. 230, 117112 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Czech Science Foundation GA ČR (Grant Number 17-05030S) for financial support, the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, Germany) for the beamtime provided at the KWS-2 instrument operated by JCNS in the frame of a regular proposal and CERIC-ERIC Consortium for the access and travel support to the Elettra Sincrotrone facility (Trieste, Italy). The research leading to this result has been supported by the project CALIPSOplus under Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Ševčík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ševčík, R., Viani, A., Mancini, L. et al. Investigation of nano-microstructural changes in Maastricht limestone after treatment with nanolime suspension. Appl. Phys. A 126, 367 (2020). https://doi.org/10.1007/s00339-020-03567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03567-6

Keywords

Navigation