Skip to main content
Log in

Development of silicon nitride-based nanocomposites with multicolour photoluminescence

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silicon-rich nitride nanocomposites with stable multicolour photoluminescence (PL) are developed in this work. Firstly, a single PL band can be adjusted in the visible spectral range. Secondly, simultaneous emission of an additional PL band is achieved due to boron-doping of the nanocomposites. Impact of thermal annealing of the silicon nitride films in different atmospheres at various temperatures on their PL spectra is studied. Processes responsible for multicolour emission in the boron-doped nanocomposites are discussed. The developed nanocomposites can be further applied for nanothermometry or biosensing applications. They can be also used for synthesis of silicon nanoparticles with multicolour PL.

Graphic abstract

Intense violet-based multicolour photoluminescence of silicon nitride nanocomposite with tunable emission position is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yu.V Ryabchikov, Facile laser synthesis of multimodal composite silicon/gold nanoparticles with variable chemical composition. J. Nanopart. Res. 21(4), 85 (2019). https://doi.org/10.1007/s11051-019-4523-4

    Article  ADS  Google Scholar 

  2. P. Zhu, K. Tan, Q. Chen, J. Xiong, L. Gao, Origins of efficient multiemission luminescence in carbon dots. Chem. Mater. 31, 4732–4742 (2019). https://doi.org/10.1021/acs.chemmater.9b00870

    Article  Google Scholar 

  3. D. Ruiz, B. del Rosal, M. Acebrón, C. Palencia, C. Sun, J. Cabanillas-González, M. López-Haro, A.B. Hungría, D. Jaque, B.H. Juarez, Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry. Adv. Funct. Mat. 27, 1604629 (2017). https://doi.org/10.1002/adfm.201604629

    Article  Google Scholar 

  4. S. Uchiyama, C. Gota, Luminescent molecular thermometers for the ratiometric sensing of intracellular temperature. Rev. Anal. Chem. 36, 20160021 (2016). https://doi.org/10.1515/revac-2016-0021

    Article  Google Scholar 

  5. J. Yang, Y. Liu, Y. Zhao, Z. Gong, M. Zhang, D. Yan, H. Zhu, C. Liu, C. Xu, H. Zhang, Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing. Chem. Mater. 29, 8119–8131 (2017). https://doi.org/10.1021/acs.chemmater.7b01958

    Article  Google Scholar 

  6. C. Wang, H. Lin, Z. Xu, Y. Huang, M.G. Humphrey, C. Zhang, Tunable carbon-dot-based dual-emission fluorescent nanohybrids for ratiometric optical thermometry in living cells. ACS Appl. Mater. Inter. 8, 6621–6628 (2016). https://doi.org/10.1021/acsami.5b11317

    Article  Google Scholar 

  7. J.-R. Macairan, D.B. Jaunky, A. Piekny, R. Naccache, Intracellular ratiometric temperature sensing using fluorescent carbon dots. Nanoscale Adv. 1, 105–113 (2019). https://doi.org/10.1039/C8NA00255J

    Article  ADS  Google Scholar 

  8. L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, A. Bednarkiewicz, A broadening temperature sensitivity range with a core–shell YbEr@YbNd double ratiometric optical nanothermometer. Nanoscale 8, 5037–5042 (2016). https://doi.org/10.1039/C5NR08223D

    Article  ADS  Google Scholar 

  9. O.L.A. Savchuk, J.J. Carvajal, J. Massons, C. Cascales, M. Aguiló, F. Díaz, Novel low-cost, compact and fast signal processing sensor for ratiometric luminescent nanothermometry. Sensor Actuat A-Phys 250, 87–95 (2016). https://doi.org/10.1016/j.sna.2016.08.031

    Article  Google Scholar 

  10. M. Xu, X. Zou, Q. Su, W. Yuan, C. Cao, Q. Wang, X. Zhu, W. Feng, F. Li, Ratiometric nanothermometer in vivo based on triplet sensitized upconversion. Nat. Commun. 9, 2698 (2018). https://doi.org/10.1038/s41467-018-05160-1

    Article  ADS  Google Scholar 

  11. E.N. Cerón, D.H. Ortgies, B. del Rosal, F. Ren, A. Benayas, F. Vetrone, D. Ma, F. Sanz-Rodríguez, J.G. Solé, D. Jaque, E.M. Rodríguez, Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window. Adv. Mater. 27, 4781–4787 (2015). https://doi.org/10.1002/adma.201501014

    Article  Google Scholar 

  12. S. Han, X. Qin, Z. An, Y. Zhu, L. Liang, Y. Han, W. Huang, X. Liu, Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nat. Comm. 7, 13059 (2016). https://doi.org/10.1038/ncomms13059

    Article  ADS  Google Scholar 

  13. D. Yue, Q. Li, W. Lu, Q. Wang, M. Wang, C. Li, L. Jin, Y. Shi, Z. Wang, J. Hao, Multi-color luminescence of uniform CdWO4 nanorods through Eu3+ ion doping. J. Mater. Chem. C 3, 2865–2871 (2015). https://doi.org/10.1039/C4TC02409E

    Article  Google Scholar 

  14. S. Goderski, M. Runowski, S. Lis, Synthesis of luminescent KY3F10 nanopowder multi-doped with lanthanide ions by a co-precipitation method. J. Rare Earths 34, 808–813 (2016). https://doi.org/10.1016/S1002-0721(16)60098-4

    Article  Google Scholar 

  15. J. Sarkar, S. Mondal, S. Panja, I. Dey, A. Sarkar, U.K. Ghorai, Multicolour tuning and perfect white emission from novel PbWO4:Yb3+:Ho3+:Tm3+ nanophosphor. Mater. Res. Bull. 112, 314–322 (2019). https://doi.org/10.1016/j.materresbull.2018.12.009

    Article  Google Scholar 

  16. P. Singh, P.K. Shahi, S.K. Singh, A.K. Singh, M.K. Singh, R. Prakash, S.B. Rai, Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications. Nanoscale 9, 696–705 (2017). https://doi.org/10.1039/C6NR07250J

    Article  Google Scholar 

  17. B. Li, X. Huang, Multicolour tunable luminescence of thermal-stable Ce3+/Tb3+/Eu3+-triactivated Ca3Gd(GaO)3(BO3)4 phosphors via Ce3+ → Tb3+ → Eu3+ energy transfer for near-UV WLEDs applications. Ceram. Int. 44, 4915–4923 (2018). https://doi.org/10.1016/j.ceramint.2017.12.082

    Article  Google Scholar 

  18. V. Kumar, A. Pandey, O.M. Ntwaeaborwa, V. Dutta, H.C. Swart, Structural and luminescence properties of Eu3+/Dy3+ embedded sodium silicate glass for multicolour emission. J. Alloy Compd. 708, 922–931 (2017). https://doi.org/10.1016/j.jallcom.2017.03.061

    Article  Google Scholar 

  19. D. Alexander, K. Thomas, S. Sisira, L.A. Jacob, S. Gopi, A. Kumar, P.R. Biju, N.V. Unnikrishnan, C. Joseph, Eu3+ activated terbium oxalate nanocrystals: a novel luminescent material with delayed concentration quenching and tunable multicolour emission. Opt. Mater. 86, 366–375 (2018). https://doi.org/10.1016/j.optmat.2018.10.013

    Article  ADS  Google Scholar 

  20. Yu.V. Ryabchikov, V. Lysenko, T. Nychyporuk, Enhanced thermal sensitivity of silicon nanoparticles embedded in (nano–Ag)/SiNx for luminescent thermometry. J. Phys. Chem. C 118, 12515 (2014). https://doi.org/10.1021/jp411887s

    Article  Google Scholar 

  21. Yu.V. Ryabchikov, S.A. Alekseev, V. Lysenko, G. Bremond, J.-M. Bluet, Photoluminescence thermometry with alkyl–terminated silicon nanoparticles dispersed in low–polar liquids. Phys. Status Solidi R 7(6), 414 (2013). https://doi.org/10.1002/pssr.201307093

    Article  Google Scholar 

  22. Yu.V Ryabchikov, S.A. Alekseev, V. Lysenko, G. Bremond, J.-M. Bluet, Photoluminescence of silicon nanoparticles chemically modified by alkyl groups and dispersed in low–polar liquids. J. Nanopart. Res. 15(4), 1535 (2013). https://doi.org/10.1007/s11051-013-1535-3

    Article  ADS  Google Scholar 

  23. E.A. Konstantinova, Yu.V Ryabchikov, L.A. Osminkina, A.S. Vorontsov, P.K. Kashkarov, Effect of adsorption of the donor and acceptor molecules at the surface of porous silicon on the recombination properties of silicon nanocrystals. Semiconductors 38(11), 1344 (2004). https://doi.org/10.1134/1.1823072

    Article  ADS  Google Scholar 

  24. S. Ma, M. Hu, P. Zeng, M. Li, W. Yan, Y. Qin, Synthesis and low-temperature gas sensing properties of tungsten oxide nanowires/porous silicon composite. Sensors Actuat. B Chem. 341, 192 (2014). https://doi.org/10.1016/j.snb.2013.10.121

    Article  Google Scholar 

  25. F. Priolo, T. Gregorkiewicz, M. Galli, T.F. Krauss, Silicon nanostructures for photonics and photovoltaics. Nature Nanotech. 9, 19 (2014). https://doi.org/10.1038/nnano.2013.271

    Article  ADS  Google Scholar 

  26. S. Basude, D. Debajyoti, Development of nc-Si/a-SiNx: H thin films for photovoltaic and light-emitting applications. Sci. Adv. Mater. 5, 188 (2013). https://doi.org/10.1166/sam.2013.1446

    Article  Google Scholar 

  27. R.K. Bommali, S.P. Singh, S. Rai, P. Mishra, B.R. Sekhar, G.V. Prakash, P. Srivastava, Excitation dependent photoluminescence study of Si-rich a-SiNx: H thin films. J. Appl. Phys. 112, 123518 (2012). https://doi.org/10.1063/1.4770375

    Article  ADS  Google Scholar 

  28. Z. Xia, S. Huang, Structural and photoluminescence properties of silicon nanocrystals embedded in SiC matrix prepared by magnetron sputtering. Solid State Commun. 150, 914 (2010). https://doi.org/10.1016/j.ssc.2010.02.032

    Article  ADS  Google Scholar 

  29. M.S. Kang, R.K. Singh, T.-H. Kim, J.-H. Kim, K.D. Patel, H.-W. Kim, Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomater. 55, 466–480 (2017). https://doi.org/10.1016/j.actbio.2017.03.054

    Article  Google Scholar 

  30. T.-M. Liu, J. Conde, T. Lipinski, A. Bednarkiewicz, C.-C. Huang, Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: prospects in photomedicine. Prog. Mater. Sci. 88, 89 (2017). https://doi.org/10.1016/j.pmatsci.2017.03.004

    Article  Google Scholar 

  31. B.F.P. McVey, S. Prabakar, J.J. Gooding, R.D. Tilley, Solution synthesis, surface passivation, optical properties, biomedical applications, and cytotoxicity of silicon and germanium nanocrystals. Chem. Plus. Chem. 82, 60–73 (2017). https://doi.org/10.1002/cplu.201600207

    Article  Google Scholar 

  32. C.-C. Tu, K. Awasthi, K.-P. Chen, C.-H. Lin, M. Hamada, N. Ohta, Y.-K. Li, Time-gated imaging on live cancer cells using silicon quantum dot nanoparticles with long-lived fluorescence. ACS Photonics 4, 1306–1315 (2017). https://doi.org/10.1021/acsphotonics.7b00188

    Article  Google Scholar 

  33. T. Kumeria, S.J.P. McInnes, S. Maher, A. Santos, Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives. Expert Opin. Drug. Del. 14, 1407–1422 (2017). https://doi.org/10.1080/17425247.2017.1317245

    Article  Google Scholar 

  34. T. Serdiuk, Yu. Zakharko, T. Nychyporuk, A. Geloen, M. Lemiti, V. Lysenko, Nanostructured silicon nitride thin films for label-free multicolor luminescent cell imaging. Nanoscale 4, 5860 (2012). https://doi.org/10.1039/C2NR31376F

    Article  Google Scholar 

  35. Yu.V Ryabchikov, I.A. Belogorokhov, M.B. Gongalskiy, L.A. Osminkina, VYu. Timoshenko, Photosensitized Generation of singlet oxygen in powders and aqueous suspensions of silicon nanocrystals. Semiconductors 45(8), 1059 (2011). https://doi.org/10.1134/S106378261108015X

    Article  ADS  Google Scholar 

  36. Yu.V Ryabchikov, I.A. Belogorokhov, A.S. Vorontsov, L.A. Osminkina, V.Y. Timoshenko, P.K. Kashkarov, Dependence of the singlet oxygen photosensitization efficiency on morphology of porous silicon. Phys. Status Solidi A 204, 1271 (2007). https://doi.org/10.1002/pssa.200674306

    Article  ADS  Google Scholar 

  37. E.A. Konstantinova, V.A. Demin, A.S. Vorontzov, Yu.V Ryabchikov, I.A. Belogorokhov, L.A. Osminkina, P.A. Forsh, P.K. Kashkarov, VYu. Timoshenko, Electron paramagnetic resonance and photoluminescence study of si nanocrystals—photosensitizers of singlet oxygen molecules. J. Non-Cryst. Solids 352, 1156 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.12.017

    Article  ADS  Google Scholar 

  38. Yu.V Ryabchikov, Size modification of optically active contamination-free silicon nanoparticles with paramagnetic defects by their fast synthesis and dissolution. Phys. Status Solidi A 216(2), A1800685 (2019). https://doi.org/10.1002/pssa.201800685

    Article  ADS  Google Scholar 

  39. A.Y. Kharin, V.V. Lysenko, A. Rogov, Yu.V. Ryabchikov, A. Geloen, I. Tishchenko, O. Marty, P.G. Sennikov, R.A. Kornev, I.N. Zavestovskaya, A.V. Kabashin, V.Y. Timoshenko, Bi-modal nonlinear optical contrast from Si nanoparticles for cancer theranostics. Adv. Opt. Mater. 2019, 18011728 (2019). https://doi.org/10.1002/adom.201801728

    Article  Google Scholar 

  40. M.Yu. Kirillin, E.A. Sergeeva, P.D. Agrba, A.D. Krainov, A.A. Ezhov, D.V. Shuleiko, P.K. Kashkarov, S.V. Zabotnov, Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography. Las. Phys. 25, 075604 (2015). https://doi.org/10.1088/1054-660X/25/7/075604

    Article  ADS  Google Scholar 

  41. S. Rao, J. Sutin, R. Clegg, E. Gratton, M.H. Nayfeh, S. Habbal, A. Tsolakidis, R.M. Martin, Excited states of tetrahedral single-core Si29 nanoparticles. Phys. Rev. B 69, 205319 (2004). https://doi.org/10.1103/PhysRevB.69.205319

    Article  ADS  Google Scholar 

  42. A. Tanaka, R. Saito, T. Kamikake, M. Imamura, H. Yasuda, Electronic structures and optical properties of butyl-passivated Si nanoparticles. Solid State Commun. 140, 400 (2006). https://doi.org/10.1016/j.ssc.2006.07.045

    Article  ADS  Google Scholar 

  43. P. Liu, Y. Liang, H.B. Li, J. Xiao, T. He, G.W. Yang, Violet-blue photoluminescence from Si nanoparticles with zinc-blende structure synthesized by laser ablation in liquids. AIP Adv. 3, 022127 (2013). https://doi.org/10.1063/1.4794203

    Article  ADS  Google Scholar 

  44. V. Lysenko, V. Onyskevych, O. Marty, V.A. Skryshevsky, Y. Chevolot, C. Bru-Chevallier, Extraction of ultraviolet emitting silicon species from strongly hydrogenated nanoporous silicon. Appl. Phys. Lett. 92, 251910 (2008). https://doi.org/10.1063/1.2948955

    Article  ADS  Google Scholar 

  45. P.J. Wu, Y.C. Wang, I.C. Chen, Influence of phosphorous doping on silicon nanocrystal formation in silicon-rich silicon nitride films. J. Phys. D Appl. Phys. 46, 125104 (2013). https://doi.org/10.1088/0022-3727/46/12/125104

    Article  ADS  Google Scholar 

  46. H. Sugimoto, M. Fujii, K. Imakita, S. Hayashi, K. Akamatsu, Phosphorus and boron codoped colloidal silicon nanocrystals with inorganic atomic ligands. J. Phys. Chem. C 117, 6807 (2013). https://doi.org/10.1021/jp312788k

    Article  Google Scholar 

  47. B. Paviet-Salomona, S. Galla, A. Slaoui, Investigation of charges carrier density in phosphorus and boron doped SiNx: H layers for crystalline silicon solar cells. Mater. Sci. Eng. B Adv. 178, 580 (2013). https://doi.org/10.1016/j.mseb.2012.11.009

    Article  Google Scholar 

  48. K. Sato, A. Castaldini, N. Fukata, A. Cavalini, Electronic level scheme in boron- and phosphorus-doped silicon nanowires. Nano Lett. 12, 3012 (2012). https://doi.org/10.1021/nl300802x

    Article  ADS  Google Scholar 

  49. Y. Liu, Y. Zhou, W. Shi, L. Zhao, B. Sun, T. Ye, Study of photoluminescence spectra of Si-rich SiNx films. Mater. Lett. 58, 2397 (2004). https://doi.org/10.1016/j.matlet.2004.02.015

    Article  Google Scholar 

  50. B.S. Sahu, F. Delachat, A. Slaoui, M. Carrada, G. Ferblantier, D. Muller, Effect of annealing treatments on photoluminescence and charge storage mechanism in silicon-rich SiNx: H films. Nanoscale Res. Lett. 6, 178 (2011). https://doi.org/10.1186/1556-276X-6-178

    Article  ADS  Google Scholar 

  51. K.S. Seol, T. Futami, T. Watanabe, Y. Ohki, M. Takiyama, Efhttps://doi.org/10.1063/1.370188fects of ion implantation and thermal annealing on the photoluminescence in amorphous silicon nitride. J. Appl. Phys. 85, 6746 (1999).

    Article  ADS  Google Scholar 

  52. F.L. Martı́nez, I. Mártil, G. González-Dı́az, B. Selle, I. Sieber, Influence of rapid thermal annealing processes on the properties of SiNx:H films deposited by the electron cyclotron resonance method. J. Non-Cryst. Sol. 523, 227–230 (1998). https://doi.org/10.1016/S0022-3093(98)00092-1

    Article  ADS  Google Scholar 

  53. H.L. Hao, L.K. Wu, W.Z. Shen, Controlling the red luminescence from silicon quantum dots in hydrogenated amorphous silicon nitride films. Appl. Phys. Lett. 92, 121922 (2008). https://doi.org/10.1063/1.2902296

    Article  ADS  Google Scholar 

  54. C. Ko, J. Loo, M. Han, Annealing effects on the photoluminescence of amorphous silicon-nitride films. J. Korean Phys. Soc. 48, 1277 (2006)

    Google Scholar 

  55. M.G. Hussein, K. Wörhoff, G. Sengo, A. Driessen, Reduction of hydrogen-induced optical losses of plasma-enhanced chemical vapor deposition silicon oxynitride by phosphorus doping and heat treatment. J. Appl. Phys. 101, 023517 (2007). https://doi.org/10.1063/1.2423219

    Article  ADS  Google Scholar 

  56. J. Kistner, X. Chen, Y. Wenig, H.P. Strunk, M.B. Schubert, J.H. Werner, Photoluminescence from silicon nitride—no quantum effect. J. Appl. Phys. 110, 023520 (2011). https://doi.org/10.1063/1.3607975

    Article  ADS  Google Scholar 

  57. F.F. Komarovy, L.A. Vlasukova, I.N. Parkhomenko, O.V. Milchanin, A.V. Mudryi, A.K. Togambayeva, N.S. Kovalchuk, Strong room-temperature photoluminescence of Si-rich and N-rich silicon-nitride films. Proc. NAP 2 2, 01NTF12 (2013)

  58. W.L. Warren, C.H. Seager, J. Robertson, J. Kanicki, E.H. Poindexter, Creation and properties of nitrogen dangling bond defects in silicon nitride thin films. J. Electrochem. Soc. 143, 3685–3691 (1996). https://doi.org/10.1149/1.1837272

    Article  Google Scholar 

  59. S.V. Deshpande, E. Culari, Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition. J. Appl. Phys. 77, 6534 (1995). https://doi.org/10.1063/1.359062

    Article  ADS  Google Scholar 

  60. J. Robertson, Electronic structure of silicon nitride. Philos. Mag. B 63, 47–77 (1991). https://doi.org/10.1080/01418639108224430

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Yu.V.R. acknowledges the European Regional Development Fund and the state budget of the Czech Republic (Project BIATRI: CZ.02.1.01/0.0/0.0/15_003/0000445) and the Ministry of Education, Youth and Sports (Programs NPU I-Project no. LO1602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury V. Ryabchikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabchikov, Y.V., Lukianov, A., Oliinyk, B. et al. Development of silicon nitride-based nanocomposites with multicolour photoluminescence. Appl. Phys. A 125, 630 (2019). https://doi.org/10.1007/s00339-019-2915-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2915-z

Navigation