Skip to main content
Log in

A dynamic double layer as the origin of the mass-dependent ion acceleration in laser-induced plasmas

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 17 January 2019

This article has been updated

Abstract

The kinetic energies of the plasma plume species and their control are critical to ensure the high quality of thin films grown by pulsed laser deposition. The maximum kinetic energies of ionic plasma species from different multicomponent materials, CaTiO3, EuAlO3, La0.4Ca0.6MnO3, La0.4Ca0.6Mn0.9Ru0.1O3, and YBa2Cu3O7, have been analysed, revealing a wide range of energies of 100–700 eV. A direct relationship between the maximum kinetic energies and atomic masses has been found: the larger is the mass of an ion, the higher is its energy. This dependence varies with the kind of the ablated material and its slope is changing with laser fluence. The results are explained by the generation of a self-consistent ambipolar electric field in front of the expanding laser plume. The concept of a dynamic double layer has been considered, when heavier ions remain in the ambipolar field for a longer time as compared to lighter ions, thus resulting in stronger acceleration of heavy ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

From Ref. [26], adapted from Ref. [25]

Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 17 January 2019

    In the original publication of this article, the authors noticed a chemical formula typo.

References

  1. A. Ojeda-G-P, C.W. Schneider, M. Döbeli, T. Lippert, A. Wokaun, J. Appl. Phys. 121, 135306 (2017)

    Article  ADS  Google Scholar 

  2. H.H. Andersen, H.L. Bay, in Sputtering by Particle Bombardment I, ed. by R. Behrisch (Springer, Berlin, 1981), p. 145

    Chapter  Google Scholar 

  3. J. Schou, Appl. Surf. Sci. 255, 5191 (2009)

    Article  ADS  Google Scholar 

  4. L. You, N.T. Chua, K. Yao, L. Chen, J. Wang, Phys. Rev. B 80, 024105 (2009)

    Article  ADS  Google Scholar 

  5. J.S. Horwitz, K.S. Grabowski, D.B. Chrisey, R.E. Leuchtner, Appl. Phys. Lett. 59, 1565 (1991)

    Article  ADS  Google Scholar 

  6. S.I. Anisimov, B.S. Luk’yanchuk, A. Luches, Appl. Surf. Sci. 9698, 24 (1996)

    Article  ADS  Google Scholar 

  7. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, M. Croft, Appl. Phys. Lett. 51, 619 (1987)

    Article  ADS  Google Scholar 

  8. A. Sambri, S. Amoruso, X. Wang, F. Miletto Granozio, R. Bruzzese, J. Appl. Phys. 104, 053304 (2008)

    Article  ADS  Google Scholar 

  9. A. Ojeda-G-P, C.W. Schneider, T. Lippert, A. Wokaun, J. Appl. Phys. 120, 225301 (2016)

    Article  ADS  Google Scholar 

  10. S. Canulescu, E.L. Papadopoulou, D. Anglos, T. Lippert, C.W. Schneider, A. Wokaun, J. Appl. Phys. 105, 063107 (2009)

    Article  ADS  Google Scholar 

  11. A. Ojeda G-P, Doctoral thesis, Eidgenössische Technische Hochschule ETH Zürich, Switzerland (2016)

  12. B. Thestrup, B. Toftmann, J. Schou, B. Doggett, J.G. Lunney, Appl. Surf. Sci. 197198, 175 (2002)

    Article  ADS  Google Scholar 

  13. L. Torrisi, L. Andò, G. Ciavola, S. Gammino, A. Barnà, Rev. SCi. Instrum. 72, 68 (2001)

    Article  ADS  Google Scholar 

  14. T. Qian, R.K. Zheng, T. Zhang, T.F. Zhou, W.B. Wu, X.G. Li, Phys. Rev. B 72, 024432 (2005)

    Article  ADS  Google Scholar 

  15. J.L. Cohn, J.J. Neumeier, C.P. Popoviciu, K.J. McCellan, Th Leventouri, Phys. Rev. B 56, R8495 (1997)

    Article  ADS  Google Scholar 

  16. O. Fabrichnaya, I. Saenko, M.J. Kriegel, J. Seidel, T. Zienert, G. Savinykh, J. Eur. Ceram. Soc. 36, 1455 (2016)

    Article  Google Scholar 

  17. B.F. Woodfield, J.L. Shapiro, R. Stevens, R.L. Putnam, K.B. Helean, A. Navrotsky, J. Chem. Thermodyn. 31, 1573 (1999)

    Article  Google Scholar 

  18. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens (eds.), Thermal Properties of Matter, Vol. 2. Thermal Conductivity: Nonmetallic solids (IFI-Plenum, New York, 1970)

    Google Scholar 

  19. J.D. Doss, Engineers Guide To High Temperature Superconductivity (Wiley, New York, 1989)

    Google Scholar 

  20. R.W. Dreyfus, R. Kelly, R.E. Walkup, Nucl. Instrum. Methods Phys. Res. B 23, 557 (1987)

    Article  ADS  Google Scholar 

  21. S.V. Starinskiy, Y.G. Shukhov, A.V. Bulgakov, Tech. Phys. Lett. 42, 411 (2016)

    Article  ADS  Google Scholar 

  22. A.V. Bulgakov, O.F. Bobrenok, V.I. Kosyakov, Chem. Phys. Lett. 320, 19 (2000)

    Article  ADS  Google Scholar 

  23. N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok, Phys. Rev. E 62, 5624 (2000)

    Article  ADS  Google Scholar 

  24. R. Stoian, D. Ashkenasi, A. Rosenfeld, M. Wittmann, R. Kelly, E.E.B. Campbell, Nucl. Instrum. Methods Phys. Res. B 166, 682 (2000)

    Article  ADS  Google Scholar 

  25. R. Stoian, A. Rosenfeld, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Appl. Phys. Lett. 85, 694 (2004)

    Article  ADS  Google Scholar 

  26. G. Hairapetian, R.L. Stenzel, Phys. Fluids B 3, 899 (1991)

    Article  ADS  Google Scholar 

  27. A. Sambri, C. Aruta, E. Di Gennaro, X. Wang, U. Scotti, F. di Uccio, Miletto, Granozio, S. Amoruso, J. Appl. Phys. 119, 125301 (2016)

    Article  ADS  Google Scholar 

  28. A.A. Morozov, A.B. Evtushenko, A.V. Bulgakov, Appl. Phys. Lett. 106, 054107 (2015)

    Article  ADS  Google Scholar 

  29. D.B. Geohegan, A.A. Puretzky, Appl. Surf. Sci. 9698, 131 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial supports from the Paul Scherrer Institute and the Swiss National Science Foundation (SNF/Project 00021_143665) are gratefully acknowledged. NMB and AVB acknowledge financial support from the European Regional Development Fund and the state budget of the Czech Republic (Project BIATRI: CZ.02.1.01/0.0/0.0/15_003/0000445), from the Ministry of Education, Youth and Sports (Programs NPU I-Project no. LO1602), and from the Russian Science Foundation (Project 16-19-10506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lippert.

Additional information

The ​original ​version ​of ​this ​article ​was ​revised. ​in the original publication of this article, the authors noticed a chemical formula typo. It involves the chemical formula of: YBa2Cu3O7. In the abstract and in its first appearance in the text (second page, left column, line 5) it is missing the number "7" in the Oxygen. this is, YBa2Cu3O instead of YBa2Cu3O7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojeda-G-P, A., Yao, X., Bulgakova, N.M. et al. A dynamic double layer as the origin of the mass-dependent ion acceleration in laser-induced plasmas. Appl. Phys. A 125, 71 (2019). https://doi.org/10.1007/s00339-018-2345-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2345-3

Navigation