Skip to main content

Advertisement

Log in

Diamond-like carbon prepared by pulsed laser deposition with ion bombardment: physical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Diamond-like carbon (DLC) and titanium-doped DLC thin films were prepared by unique hybrid system consisting of pulsed laser deposition, ion source (bombardment) and magnetron sputtering. The influence of deposition parameters (ion energies, deposition pressures and magnetron power) on composition and physical properties was studied. Composition and sp3/sp2 ratio were determined by XPS. sp3/sp2 ratio was in the range from 1.4 to 2.2 for undoped DLC and from 3.4 to 4.8 for Ti-DLC. AFM showed that the layers were smooth, but with small amounts of random droplets. The measurements of the contact angle and determination of surface free energy were made for water, diiodomethane and ethylene glycol. Hardness and reduced Young’s modulus varied from 20 to 31 GPa and from 182 to 276 GPa, respectively. Film adhesion was determined by scratch test; LC3 reached 23 N for DLC and 27 N for TiDLC. Optimization of sp3/sp2 ratio, hardness and adhesion to biomedical alloys will advance the DLC coatings usability in the field of implantology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Robertson, Mater. Sci. Eng. R Rep. 37(4–6), 129 (2007). https://doi.org/10.1016/S0927-796X(02)00005-0

    Google Scholar 

  2. P.A. Karaseov, O.A. Podsvirov, A.I. Titov, K.V. Karabeshkin, A.Ya. Vinogradov, V.S. Belyakov, A.V. Arkhipov, L.M. Nikulina, A.L. Shakhmin, E.N. Shubina, N.N. Karasev, J. Surf. Investig. 8(1), 45 (2014). https://doi.org/10.1134/S1027451013060098

    Article  Google Scholar 

  3. F. Rossi, B. André, A. van Veen, P.E. Mijnarends, H. Schut, M.P. Delplancke, G. Lucazeau, L. Abello, J. Phys. IV Fr. 05, C1-179–C1-191 (1995). https://doi.org/10.1051/jp4:1995121

    Article  Google Scholar 

  4. F.Z. Cui, D.J. Li, Surf. Coat. Technol. 131(1–3), 481 (2000). https://doi.org/10.1016/S0257-8972(00)00809-4

    Article  Google Scholar 

  5. H.S. Tran, M.M. Puc, C.W. Hewitt, D.B. Soll, S.W. Marra, V.A. Simonetti, J.H. Cilley, A.J. DelRossi, J. Invest. Surg. 12(3), 133 (1999)

    Article  Google Scholar 

  6. R. Hauert, U. Müller, Diam. Relat. Mater. 12(2), 171 (2003). https://doi.org/10.1016/S0925-9635(03)00019-0.

    Article  ADS  Google Scholar 

  7. A. Grill, Thin Solid Films 355–356, 189 (1999). https://doi.org/10.1016/S0040-6090(99)00516-7

    Article  Google Scholar 

  8. Y. Yin, L. Hang, J. Xu, D.R. McKenzie, M.M.M. Bilek, Thin Solid Films 516(16), 5157 (2008). https://doi.org/10.1016/j.tsf.2007.07.012

    Article  ADS  Google Scholar 

  9. C. Zhang, M. Fujii, J. Surf. Eng. Mater. Adv. Technol. 5(3), 110 (2015). https://doi.org/10.4236/jsemat.2015.53013

    Google Scholar 

  10. D.R. McKenzie, Rep. Prog. Phys. 59, 1611 (1996)

    Article  ADS  Google Scholar 

  11. Y. Lifshitz, Diam. Relat. Mater. 5(3–5), 388 (1996). https://doi.org/10.1016/0925-9635(95)00445-9

    Article  ADS  Google Scholar 

  12. Y. Lifshitz, Diam. Relat. Mater. 8(8–9), 1659 (1999). https://doi.org/10.1016/S0925-9635(99)00087-4

    Article  ADS  Google Scholar 

  13. P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, J. Koskinen, Phys. Rev. B 48(7), 4777 (1993). https://doi.org/10.1103/PhysRevB.48.4777

    Article  ADS  Google Scholar 

  14. J. Robertson, Pure Appl. Chem. 66(9), (1994). https://doi.org/10.1351/pac199466091789

  15. J. Robertson, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 342(1664), 277 (1993). https://doi.org/10.1098/rsta.1993.0021

    Article  ADS  Google Scholar 

  16. M. Jelínek, P. Písařík, T. Kocourek, J. Zemek, J. Lukeš, Appl. Phys. A 110(4), 943 (2013). https://doi.org/10.1007/s00339-012-7215-9

    Article  ADS  Google Scholar 

  17. B. André, F. Rossi, H. Dunlop, Diam. Relat. Mater. 1(2–4), 307 (1992). https://doi.org/10.1016/0925-9635(92)90046-Q

    Article  ADS  Google Scholar 

  18. F. Rossi, Chaos Solitons Fractals 10(12), 2019 (1999). https://doi.org/10.1016/S0960-0779(98)00244-6

    Article  ADS  Google Scholar 

  19. M. Jelinek, A. Voss, T. Kocourek, M. Mozafari, V. Vymětalová, M. Zezulová, P. Písařík, A. Kotzianová, C. Popov, J. Mikšovský, Phys. Status Solidi A 210(10), 2106 (2013). https://doi.org/10.1002/pssa.201228713

    Article  ADS  Google Scholar 

  20. T. Kocourek, M. Jelínek, P. Písařík, J. Remsa, M. Janovská, M. Landa, J. Zemek, V. Havránek, Appl. Surf. Sci. 417, 213 (2017). https://doi.org/10.1016/j.apsusc.2017.03.274

    Article  ADS  Google Scholar 

  21. W. Oliver, G. Pharr., J. Mater. Res. 7(6) 1564 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  ADS  Google Scholar 

  22. R. Haerle, E. Riedo, A. Pasquarello, A. Baldereschi, Phys. Rev. B 65, 045101 (2002). https://doi.org/10.1103/PhysRevB.65.045101

    Article  ADS  Google Scholar 

  23. J. Zemek, P. Jiricek, J. Houdkova, A. Artemenko, M. Jelinek, Diam. Relat. Mater. 68, 37 (2016). https://doi.org/10.1016/j.diamond.2016.06.003

    Article  ADS  Google Scholar 

  24. H. Shinotsuka, S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 47(12), 871 (2015). https://doi.org/10.1002/sia.5861

    Article  Google Scholar 

  25. J. Zemek, J. Zalman, A. Luches, Appl. Surf. Sci. 133(1–2), 27 (1998). https://doi.org/10.1016/S0169-4332(98)00181-0

    Article  ADS  Google Scholar 

  26. M. Jelínek, J. Zemek, J. Remsa, J. Mikšovský, T. Kocourek, P. Písařík, M. Trávníčková, E. Filová, L. Bačáková, Appl. Surf. Sci. 417, 73 (2017). https://doi.org/10.1016/j.apsusc.2017.03.103

    Article  ADS  Google Scholar 

  27. J. Zemek, J. Houdkova, P. Jiricek, M. Jelinek, Diam. Relat. Mater. 81, 61 (2018). https://doi.org/10.1016/j.diamond.2017.11.009

    Article  ADS  Google Scholar 

  28. F.R. Marciano, L.F. Bonetti, N.S. Da-Silva, E.J. Corat, V.J. Trava-Airoldi, Appl. Surf. Sci. 255(20), 8377 (2009). https://doi.org/10.1016/j.apsusc.2009.05.091

    Article  ADS  Google Scholar 

  29. K. Ritwik, H.-W. Roy, S.-J. Choi, K.-R. Park, Lee, Diam. Relat. Mater. 16(9), 1732 (2007). https://doi.org/10.1016/j.diamond.2007.06.002

    Article  ADS  Google Scholar 

  30. C. López-Santos, F. Yubero, J. Cotrino, L. Contreras, A. Barranco, A.R. González-Elipe, Plasma Process. Polym. 6(9), 555 (2009). https://doi.org/10.1002/ppap.200900019

    Article  Google Scholar 

  31. Y.-Y. Chang, D.-Y. Wang, Surf. Coat. Technol. 200(10 SPEC. ISS), p. 3170 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.037

    Article  Google Scholar 

  32. S. Baragetti, L. Lusvarghi, G. Bolelli, F. Tordini, Surf. Coat. Technol. 203(20–21), 3078 (2009). https://doi.org/10.1016/j.surfcoat.2009.03.040

    Article  Google Scholar 

  33. S. Srinivasan, Y. Tang, Y.S. Li, Q. Yang, A. Hirose, Appl. Surf. Sci. 258(20), 8094 (2012). https://doi.org/10.1016/j.apsusc.2012.04.178

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Grant Agency of the Czech Technical University in Prague (Grant no. SGS16/190/OHK4/2T/17), the Grant Agency of the Czech Republic (Grant no. GA15-05864S) and the Ministry of Education, Youth and Sports of the Czech Republic (Grant no. LO1409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Písařík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Písařík, P., Mikšovský, J., Remsa, J. et al. Diamond-like carbon prepared by pulsed laser deposition with ion bombardment: physical properties. Appl. Phys. A 124, 85 (2018). https://doi.org/10.1007/s00339-017-1501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1501-5

Navigation