Skip to main content

Advertisement

Log in

An update on the indigenous vascular flora of sub-Antarctic Marion Island: taxonomic changes, sequences for DNA barcode loci, and genome size data

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The flora of sub-Antarctic Marion Island forms part of the unique South Indian Ocean Biogeographic Province, and is under threat from climate change and invasive species. Current information on the flora is necessary to rapidly identify and manage future changes. We conducted a literature search on the taxonomy of indigenous vascular plant species on Marion Island and found nomenclatural changes following taxonomic revisions for Austroblechnum penna-marina (Poir.) Gasper & V.A.O.Dittrich, Carex dikei (Nelmes) K.L.Wilson, Leptinella plumosa Hook.f., Notogrammitis crassior (Kirk) Parris, Phlegmariurus saururus (Lam.) B.Øllg., and Polypogon magellanicus (Lam.) Finot. Additionally, Ranunculus moseleyi Hook.f. was removed from our species checklist due to its long absence in floristic surveys, leaving 21 species in the indigenous vascular plant flora present on Marion Island. We also amplified and sequenced the universal plant barcoding loci rbcL and matK for 19 and 13 species, respectively, and found that ample interspecific genetic distance and minimal intraspecific genetic distance allowed for easy discrimination between species. Lastly, we obtained genome size estimates using flow cytometry for 12 species. Mean 2C genome size for species on Marion Island ranged from 0.44 to 21.44 pg, which is on the lower end of the known range for vascular plant species. We detected two distinct cytotypes in Poa cookii (Hook.f.) Hook.f. and one cytotype in all other species measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

DNA sequence data generated in this study are available on GenBank.

References

  • Bainard JD, Henry TA, Bainard LD, Newaster SG (2011) DNA content variation in monilophytes and lycophytes: large genomes that are not endopolyploid. Chromosom Res 19:763–775. https://doi.org/10.1007/s10577-011-9228-1

    Article  CAS  Google Scholar 

  • Bennett MD (1976) DNA amount, latitude, and crop plant distribution. Environ Exp Bot 16:93–108

    CAS  Google Scholar 

  • Bennett MD, Smith JB, Lewis Smith RI (1982) DNA amounts of angiosperms from the Antarctic and South Georgia. Environ Exp Bot 22:307–318

    Google Scholar 

  • Bergstrom DM, Bricher PK, Raymond B, Terauds A, Doley D, McGeoch MA, Whinam J, Glen M et al (2015) Rapid collapse of a sub-Antarctic alpine ecosystem: the role of climate and pathogens. J Appl Ecol 52:774–783. https://doi.org/10.1111/1365-2664.12436

    Article  Google Scholar 

  • Bomblies K, Higgins JD, Yant L (2015) Meiosis evolves: adaptation to external and internal environments. New Phytol 208:306–323

    CAS  PubMed  Google Scholar 

  • Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen A-C, Elven R (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536. https://doi.org/10.1111/j.1095-8312.2004.00337.x

    Article  Google Scholar 

  • Burgess KS, Fazekas AJ, Kesanakurti PR, Graham SW, Husband BC, Newmaster SG, Percy DM, Hajibabaei M, Barrett SCH (2011) Discriminating plant species in a local temperate flora using the rbcL+matK DNA barcode. Methods Ecol Evol 2:333–340. https://doi.org/10.1111/j.2041-210X.2011.00092.x

    Article  Google Scholar 

  • Burnard D, Shepherd L, Perrie L, Munkaesi A (2016) Phylogenetic relationships of New Zealand Lycopodiaceae. Plant Syst Evol 302:661–667. https://doi.org/10.1007/s00606-016-1290-x

    Article  Google Scholar 

  • Case TJ (1990) Invasion resistance arises in strongly interacting species-rich model competition communities. Proc Natl Acad Sci USA 87:9610–9614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castro S, Münzbergová Z, Raabová J, Loureiro J (2011) Breeding barriers at a diploid-hexaploid contact zone in Aster amellus. Evol Ecol 25:795–814

    Google Scholar 

  • CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797. https://doi.org/10.1073/pnas.0905845106

    Article  PubMed Central  Google Scholar 

  • Chown SL, Brooks CM (2019) The state and future of Antarctic environments in a global context. Annu Rev Environ Resour 44:1–30

    Google Scholar 

  • Chown SL, Gremmen NJM, Gaston SL (1998) Ecological biogeography of Southern Ocean islands: species-area relationships, human impacts, and conservation. Am Nat 152:562–575

    CAS  PubMed  Google Scholar 

  • Clark J, Hidalgo O, Pellicer J, Liu H, Marquardt J, Robert Y, Christenhusz M, Zhang S et al (2016) Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol 210:1072–1082. https://doi.org/10.1111/nph.13833

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106

    PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Field AR, Testo W, Bostock PD, Holtum JAM, Waycott M (2016) Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus and Phylloglossum. Mol Phylogenet Evol 94:635–657. https://doi.org/10.1016/j.ympev.2015.09.024

    Article  CAS  PubMed  Google Scholar 

  • Finot VL, Contreras L, Ulloa W, Marticorena A, Baeza CM, Ruiz E (2013) El género Polypogon (Poaceae: Agrostidinae) en Chile. J Bot Res Inst Tex 7:169–194

    Google Scholar 

  • Fofana B, Harvengt L, Baudoin JP, Du Jardin P (1997) New primers for the polymerase chain amplification of cpDNA intergenic spacers in Phaseolus phylogeny. Belg J Bot 129:118–122

    Google Scholar 

  • Frenot Y, Gloaguen JC, Massé L, Lebouvier M (2001) Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biol Conserv 101:33–50

    Google Scholar 

  • Galbraith D, Harkins K, Maddox J, Ayres N, Sharma D, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    CAS  PubMed  Google Scholar 

  • Gasper AL, Dittrich VAO, Smith AR, Salino A (2016) A classification for Blechnaceae (Polypodiales: Polypodiopsida): new genera, resurrected names, and combinations. Phytotaxa 275:191–227. https://doi.org/10.11646/phytotaxa.275.3.1

    Article  Google Scholar 

  • Gasper AL, Almeida TE, Dittrich VAO, Smith AR, Salino A (2017) Molecular phylogeny of the fern family Blechnaceae (Polypodiales) with a revised genus-level treatment. Cladistics 33:429–446. https://doi.org/10.1111/cla.12173

    Article  PubMed  Google Scholar 

  • Global Carex Group (2015) Making Carex monophyletic (Cyperaceae, tribe Cariceae): a new broader circumscription. Bot J Linn Soc 179:1–42. https://doi.org/10.1111/boj.12298

    Article  Google Scholar 

  • González ML, Urdampilleta JD, Fasanella M, Premoli AC, Chiapella JO (2016) Distribution of rDNA and polyploidy in Deschampsia antarctica E. Desv. in Antarctic and Patagonic populations. Polar Biol 39:1663–1677. https://doi.org/10.1007/s00300-016-1890-5

    Article  Google Scholar 

  • Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New York

    Google Scholar 

  • Greene SW, Greene DM (1963) Check list of the sub-Antarctic and Antarctic vascular flora. Polar Rec 11:411–418

    Google Scholar 

  • Greene SW, Walton DWH (1975) An annotated check list of the sub-Antarctic and Antarctic vascular flora. Polar Rec 17:473–484

    Google Scholar 

  • Gremmen NJM, Smith VR (2008) Appendix IV. Vascular plants of the Prince Edward Islands. In: Chown SL, Froneman PW (eds) The Prince Edward Islands. Land-sea interactions in a changing ecosystem. Sun Press, Stellenbosch, pp 390–392

    Google Scholar 

  • Greve M, Gremmen NJM, Gaston KJ, Chown SL (2005) Nestedness of Southern Ocean island biotas: ecological perspectives on a biogeographical conundrum. J Biogeogr 32:155–168

    Google Scholar 

  • Greve M, Mathakutha R, Steyn C, Chown SL (2017) Terrestrial invasions on sub-Antarctic Marion and Prince Edward Islands. Bothalis 47:a2143. https://doi.org/10.4102/abc.v47i2.2143

    Article  Google Scholar 

  • Hänel C, Chown S (1998) An introductory guide to the Marion and Prince Edward Island special nature reserves 50 years after annexation. Department of Environmental Affairs and Tourism, Pretoria

    Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270:S96–S99

    CAS  Google Scholar 

  • Himmelreich S, Breitwieser I, Oberprieler C (2012) Phylogeny, biogeography, and evolution of sex expression in the southern hemisphere genus Leptinella (Compositae, Anthemideae). Mol Phylogenet Evol 65:464–481. https://doi.org/10.1016/j.ympev.2012.07.001

    Article  PubMed  Google Scholar 

  • Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE 6:e19254. https://doi.org/10.1371/journal.pone.0019254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingsworth PM, Li D-Z, van der Bank M, Twyford AD (2016) Telling plant species apart with DNA: from barcodes to genomes. Philos Trans R Soc B 371:20150338. https://doi.org/10.1098/rstb.2015.0338

    Article  CAS  Google Scholar 

  • Holub J (1991) Some taxonomic changes within Lycopodiales. Folia Geobot Phytotaxon 26:81–94. https://doi.org/10.1007/BF02912943

    Article  Google Scholar 

  • Huntley BJ (1971) Vegetation. In: Van Zinderen Bakker EM, Winterbottom JM, Dyer RA (eds) Marion and Prince Edward Islands: report on the South African biological & geological expedition, 1965–1966. A. A. Balkema, Cape Town, pp 98–160

    Google Scholar 

  • Husband BC, Baldwin SJ, Suda J (2013) The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Greilhuber J, Dolezel J, Wendel J (eds) Plant genome diversity, vol 2. Springer, Vienna, pp 255–276

    Google Scholar 

  • Ito Y, Tanaka N, Barfod AS, Kaul RB, Muasya AM, Garcia-Murillo P, De Vere N, Duyfjes BEE, Albach DC (2017) From terrestrial to aquatic habitats and back again: molecular insights into the evolution and phylogeny of Callitriche (Plantaginaceae). Bot J Linn Soc 184:46–58

    Google Scholar 

  • Jansen van Vuuren B, Chown SL (2007) Genetic evidence confirms origin of the house mouse on sub-Antarctic Marion Island. Polar Biol 30:327–332. https://doi.org/10.1007/s00300-006-0188-4

    Article  Google Scholar 

  • Joly S, Stevens MI, Jansen van Vuuren B (2007) Haplotype networks can be misleading in the presence of missing data. Syst Biol 56:857–862

    PubMed  Google Scholar 

  • Kalwij JM, Medan D, Kellermann J, Greve M, Chown SL (2019) Vagrant birds as a dispersal vector in transoceanic range expansion of vascular plants. Sci Rep 9:4655. https://doi.org/10.1038/s41598-019-41081-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci USA 106:18621–18626. https://doi.org/10.1073/pnas.0909820106

    Article  PubMed  PubMed Central  Google Scholar 

  • Kress WJ, García-Robledo C, Uriarte M, Erickson DL (2015) DNA barcodes for ecology, evoluton, and conservation. Trends Ecol Evol 30:25–35. https://doi.org/10.1016/j.tree.2014.10.008

    Article  PubMed  Google Scholar 

  • Kuo L-Y, Li F-W, Chiou W-L, Wang C-N (2011) First insights into fern matK phylogeny. Mol Phylogenet Evol 59:556–566. https://doi.org/10.1016/j.ympev.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  • Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Dutholt S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105:2923–2928. https://doi.org/10.1073/pnas.0709936105

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Roux PC, McGeoch MA (2008) Changes in climate extremes, variability and signature on sub-Antarctic Marion Island. Clim Change 86:309–329. https://doi.org/10.1007/s10584-007-9259-y

    Article  Google Scholar 

  • Le Roux PC, Ramaswiela T, Kalwij JM, Shaw JD, Ryan PG, Treasure AM, McClelland GTW, McGeoch MA, Chown SL (2013) Human activities, propagule pressure and alien plants in the sub-Antarctic: tests of generalities and evidence in support of management. Biol Conserv 161:18–27

    Google Scholar 

  • Lee JE, Slabber S, Jansen van Vuuren B, Chown SL (2007) Colonisation of sub-Antarctic Marion Island by a non-indigenous aphid parasitoid Aphidius matricariae (Hymenoptera, Braconidae). Polar Biol 30:1195–1201

    Google Scholar 

  • Lehnebach CA, Winkworth RC, Becker M, Lockhart PJ, Hennion F (2017) Around the pole: evolution of sub-Antarctic Ranunculus. J Biogeogr 44:875–886

    Google Scholar 

  • Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD (2019) Plant DNA C-values database (release 7.1, Apr 2019) https://cvalues.science.kew.org. Accessed 18 Oct 2019

  • Levin DA, Funderburg SW (1979) Genome size in angiosperms: temperate versus tropical species. Am Nat 114:784–795

    Google Scholar 

  • Levin RA, Wagner WL, Hoch PC, Nepokroeff M, Pires JC, Zimmer EA, Sytsma KJ (2003) Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am J Bot 90:107–115

    CAS  PubMed  Google Scholar 

  • Li F-W, Kuo L-Y, Rothfels CJ, Ebihara A, Chiou W-L, Windham MD, Pryer KM (2011) rbcL and matK earn two thumbs up as the core DNA barcode for ferns. PLoS ONE 6:e26597. https://doi.org/10.1371/journal.pone.0026597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd DG, Webb CJ (1987) The reinstatement of Leptinella at generic rank, and the status of the ‘Cotuleae’ (Asteraceae, Anthemideae). NZ J Bot 25:99–105. https://doi.org/10.1080/0028825X.1987.10409959

    Article  Google Scholar 

  • Lord JM (2015) Patterns in floral traits and plant breeding systems on Southern Ocean Islands. AoB Plants. https://doi.org/10.1093/aobpla/plv095

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyons KG, Schwartz MW (2001) Rare species loss alters ecosystem function—invasion resistance. Ecol Lett 4:358–365. https://doi.org/10.1046/j.1461-0248.2001.00235.x

    Article  Google Scholar 

  • Mairal M, Šurinová M, Castro S, Münzbergová Z (2018) Unmasking cryptic biodiversity in polyploids: origin and diversification of Aster amellus aggregate. Ann Bot 122:1047–1059

    PubMed  PubMed Central  Google Scholar 

  • McDougall I, Verwoerd W, Chevallier L (2001) K-Ar geochronology of Marion Island, Southern Ocean. Geol Mag 138:1–17

    CAS  Google Scholar 

  • Mowforth MA, Grime JP (1989) Intra-population variation in nuclear DNA amount, cell size and growth rate in Poa annua L. Funct Ecol 3:289–295. https://doi.org/10.2307/2389368

    Article  Google Scholar 

  • Murray BG, De Lange PJ, Ferguson AR (2005) Nuclear DNA variation, chromosome numbers and polyploidy in the endemic and indigenous grass flora of New Zealand. Ann Bot 96:1293–1305. https://doi.org/10.1093/aob/mci281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohri D (1998) Genome size variation and plant systematics. Ann Bot 82:75–83

    Google Scholar 

  • Øllgaard B (2012) New combinations in Neotropical Lycopodiaceae. Phytotaxa 57:10–22

    Google Scholar 

  • Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman DZ (ed) Methods in cell biology. Academic Press, New York, pp 105–110

    Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462. https://doi.org/10.1016/j.cell.2007.10.022

    Article  CAS  PubMed  Google Scholar 

  • Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ (2018) Genome size diversity and its impact on the evolution of land plants. Genes 9:88. https://doi.org/10.3390/genes9020088

    Article  CAS  PubMed Central  Google Scholar 

  • Pendlebury SF, Barnes-Keoghan IP (2007) Climate and climate change in the sub-Antarctic. Pap Proc R Soc Tasman 141:67–81

    Google Scholar 

  • Perrie LR, Parris BS (2012) Chloroplast DNA sequences indicate the grammitid ferns (Polypodiaceae) in New Zealand belong to a single clade Notogrammitis gen. nov.. NZ J Bot 50:457–472. https://doi.org/10.1080/0028825X.2012.735247

    Article  Google Scholar 

  • PPG I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54:563–603. https://doi.org/10.1111/jse.12229

    Article  Google Scholar 

  • Rayburn AL, Price HJ, Smith JC, Gold JR (1985) C-band heterochromatin and DNA content in Zea mays. Am J Bot 72:1610–1617

    Google Scholar 

  • Rice A, Šmarda P, Novosolov M, Drori M, Glick L, Sabath N, Meiri S, Belmaker J, Mayrose I (2019) The global biogeography of polyploid plants. Nat Ecol Evol 3:265–273. https://doi.org/10.1038/s41559-018-0787-9

    Article  PubMed  Google Scholar 

  • Ryan PG, Smith VR, Gremmen NJM (2003) The distribution and spread of alien vascular plants on Prince Edward Island. Afr J Mar Sci 25:555–562

    Google Scholar 

  • Scarpino SV, Levin DA, Meyers LA (2014) Polyploid formation shapes flowering plant diversity. Am Nat 184:456–465. https://doi.org/10.1086/677752

    Article  PubMed  Google Scholar 

  • Schonswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 42:92–103

    PubMed  Google Scholar 

  • Shaw JD, Spear D, Greve M, Chown SL (2010) Taxonomic homogenization and differentiation across Southern Ocean Islands differ among insects and vascular plants. J Biogeogr 37:217–228

    Google Scholar 

  • Smith VR, Mucina L (2006) Vegetation of subantarctic Marion and Prince Edward Islands. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria, pp 698–723

    Google Scholar 

  • Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then…and now: Stebbins revisited. Am J Bot 101:1057–1078. https://doi.org/10.3732/ajb.1400178

    Article  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30

    Google Scholar 

  • Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB et al (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 98:704–730. https://doi.org/10.3732/ajb.1000404

    Article  PubMed  Google Scholar 

  • Stachowicz JJ, Whitlatch RB, Osman RW (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286:1577–1579. https://doi.org/10.1126/science.286.5444.1577

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starr JR (2001) Systematics of Uncinia Pers. (Cyperaceae). Dissertation, Oxford University

  • Starr JR, Harris SA, Simpson DA (2008) Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae II: the limits of Uncinia. In: Ford BA, Naczi RCF (eds) Sedges: uses, diversity, and systematics of the Cyperaceae. Missouri Botanical Garden Press, St. Louis, pp 245–265

    Google Scholar 

  • Sundue MA, Parris BS, Ranker TA, Smith AR, Fujimoto EL, Zamora-Crosby D, Morden CW, Chiou WL et al (2014) Global phylogeny and biogeography of grammitid ferns (Polypodiaceae). Mol Phylogenet Evol 81:195–206. https://doi.org/10.1016/j.ympev.2014.08.017

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland

  • te Beest M, Roux JJL, Richardson DM, Brysting AK, Suda J, Kubesova M, Pysek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45

    Google Scholar 

  • Temsch EM, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82:63–80

    Google Scholar 

  • Testo W, Øllgaard B, Field A, Almeida T, Kessler M, Barrington D (2018) Phylogenetic systematics, morphological evolution, and natural groups in neotropical Phlegmariurus (Lycopodiaceae). Mol Phylogenet Evol 125:1–13. https://doi.org/10.1016/j.ympev.2018.03.016

    Article  PubMed  Google Scholar 

  • Wikstrom N, Kenrick P (2000) Relationships of Lycopodium and Lycopodiella based on combined plastid rbcL gene and trnL intron sequence data. Syst Bot 25:495–510

    Google Scholar 

  • Zietsman J, Dreyer LL, Jansen van Vuuren B (2009) Genetic differentiation in Oxalis (Oxalidaceae): a tale of rarity and abundance in the Cape Floristic Region. S Afr J Bot 75:27–33

    Google Scholar 

Download references

Acknowledgements

This research was funded by the South African National Research Foundation (NRF) through South African National Antarctic Program (SANAP) research grants to MG, PClR, and BJvV (Grant Numbers 110734, 110726, and 110728) and a Foundational Biodiversity Information Programme grant to RAD (UID: 98120). Sampling on Marion Island was conducted during the 2016 and 2018 relief voyages, which were logistically supported and funded by the South African Department of Environmental Affairs and SANAP. We thank the South African Department of Environmental Affairs (permits PEIMC1/2013 and PEIMR15/2016) and Cape Nature (0027-AAA008-00803) for permission to collect on Marion Island. JHC and MM were supported through grant-holder postdoctoral bursaries to BJvV (SANAP), with supplementary funding from the University of Johannesburg and Stellenbosch University. NISM was supported by a NRF SANAP Masters Fellowship. ZM was supported by the Czech Academy of Sciences (RVO67985939) and the Ministry of Education, Youth and Sports of the Czech Republic. We thank Tirupathi Rao Golla for assistance with DNA sequencing and Zuzana Líblová for assistance with flow cytometry. This manuscript was improved by the input of several anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettine Jansen van Vuuren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chau, J.H., Mtsi, N.I.S., Münbergová, Z. et al. An update on the indigenous vascular flora of sub-Antarctic Marion Island: taxonomic changes, sequences for DNA barcode loci, and genome size data. Polar Biol 43, 1817–1828 (2020). https://doi.org/10.1007/s00300-020-02747-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02747-7

Keywords

Navigation