Skip to main content
Log in

A Diffuse Interface Model of a Two-Phase Flow with Thermal Fluctuations

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider a model of a two phase flow proposed by Anderson et al. taking into account possible thermal fluctuations. The mathematical model consists of the compressible Navier–Stokes system coupled with the Cahn–Hilliard equation, where the latter is driven by a multiplicative temporal white noise accounting for thermal fluctuations. We show existence of dissipative martingale solutions satisfying the associated total energy balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and in all that follows, we denote the weak limit of nonlinear terms by the pointwise limit under the bar sign.

References

  1. Abels, H., Feireisl, E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57(2), 659–698 (2008)

    Article  MathSciNet  Google Scholar 

  2. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In: Annual review of fluid mechanics, Vol. 30, volume 30 of Annual Review of Fluid Mechanics, pp. 139–165. Annual Reviews, Palo Alto, CA (1998)

  3. Breit, D., Feireisl, E., Hofmanová, M.: Stochastically Forced Compressible Fluid Flows. De Gruyter Series in Applied and Numerical Mathematics, vol. 3. De Gruyter, Berlin (2018)

    Book  Google Scholar 

  4. Breit, D., Hofmanová, M.: Stochastic Navier–Stokes equations for compressible fluids. Indiana Univ. Math. J. 65, 1183–1250 (2016)

    Article  MathSciNet  Google Scholar 

  5. Debussche, A., Goudenège, L.: Stochastic Cahn–Hilliard equation with double singular nonlinearities and two reflections. SIAM J. Math. Anal. 43(3), 1473–1494 (2011)

    Article  MathSciNet  Google Scholar 

  6. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  7. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  8. Gal, C.G., Medjo, T.T.: On a regularized family of models for homogeneous incompressible two-phase flows. J. Nonlinear Sci. 24(6), 1033–1103 (2014)

    Article  MathSciNet  Google Scholar 

  9. Gal, C.G., Medjo, T.T.: Regularized family of models for incompressible Cahn–Hilliard two-phase flows. Nonlinear Anal. Real World Appl. 23, 94–122 (2015)

    Article  MathSciNet  Google Scholar 

  10. Goudenège, L.: Stochastic Cahn–Hilliard equation with singular nonlinearity and reflection. Stoch. Process. Appl. 119(10), 3516–3548 (2009)

    Article  MathSciNet  Google Scholar 

  11. Goudenège, L., Manca, L.: Asymptotic properties of stochastic Cahn–Hilliard equation with singular nonlinearity and degenerate noise. Stoch. Process. Appl. 125(10), 3785–3800 (2015)

    Article  MathSciNet  Google Scholar 

  12. Horgan, C.O.: Korn’s inequalities and their applications in continuuum fluid mechanics. SIAM Rev. 37, 491–511 (1995)

    Article  MathSciNet  Google Scholar 

  13. Itô, K., Nisio, M.: On stationary solutions of a stochastic differential equation. J. Math. Kyoto Univ. 4, 1–75 (1964)

    Article  MathSciNet  Google Scholar 

  14. Jakubowski, A.: The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. i Primenen. 42(1), 209–216 (1997)

    Article  MathSciNet  Google Scholar 

  15. Lions, P.-L.: Mathematical Topics in Fluid Dynamics, Compressible Models, vol. 2. Oxford Science Publication, Oxford (1998)

    MATH  Google Scholar 

  16. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Springer, New York (2005)

    MATH  Google Scholar 

  17. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A 454(1978), 2617–2654 (1998)

    Article  MathSciNet  Google Scholar 

  18. Medjo, T.T.: Pullback attractors for a non-autonomous Cahn–Hilliard–Navier–Stokes system in 2D. Asymptot. Anal. 90(1–2), 21–51 (2014)

    Article  MathSciNet  Google Scholar 

  19. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997)

    Book  Google Scholar 

  20. Scarpa, L.: On the stochastic Cahn–Hilliard equation with a singular double-well potential. 2017. arxiv preprint No. 1710.01974

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madalina Petcu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of E.F. leading to these results has received funding from the Czech Sciences Foundation (GAČR), Grant Agreement 18-05974S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feireisl, E., Petcu, M. A Diffuse Interface Model of a Two-Phase Flow with Thermal Fluctuations. Appl Math Optim 83, 531–563 (2021). https://doi.org/10.1007/s00245-019-09557-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09557-2

Keywords

Navigation