Skip to main content
Log in

A radioligand receptor binding assay for measuring of insulin secreted by MIN6 cells after stimulation with glucose, arginine, ornithine, dopamine, and serotonin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We adapted a radioligand receptor binding assay for measuring insulin levels in unknown samples. The assay enables rapid and accurate determination of insulin concentrations in experimental samples, such as from insulin-secreting cells. The principle of the method is based on the binding competition of insulin in a measured sample with a radiolabeled insulin for insulin receptor (IR) in IM-9 cells. Both key components, radiolabeled insulin and IM-9 cells, are commercially available. The IR binding assay was used to determine unknown amounts of insulin secreted by MIN6 β cell line after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. The experimental data obtained by the IR binding assay were compared to the results determined by RIA kits and both methods showed a very good agreement of results. We observed the stimulation of glucose-induced insulin secretion from MIN6 cells by arginine, weaker stimulation by ornithine, but inhibitory effects of dopamine. Serotonin effects were either stimulatory or inhibitory, depending on the concentration of serotonin used. The results will require further investigation. The study also clearly revealed advantages of the IR binding assay that allows the measuring of a higher throughput of measured samples, with a broader range of concentrations than in the case of RIA kits. The IR binding assay can provide an alternative to standard RIA and ELISA assays for the determination of insulin levels in experimental samples and can be especially useful in scientific laboratories studying insulin production and secretion by β cells and searching for new modulators of insulin secretion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saltiel AR. Insulin signaling in health and disease. J Clin Invest. 2021;131:e142241.

  2. Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997;15:289–92.

    Article  CAS  PubMed  Google Scholar 

  3. Herring R, Jones RH, Russell-Jones DL. Hepatoselectivity and the evolution of insulin. Diabetes Obes Metab. 2014;16:1–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bryant NJ, Gould GW. Insulin stimulated GLUT4 translocation - size is not everything! Curr Opin Cell Biol. 2020;65:28–34.

    Article  CAS  PubMed  Google Scholar 

  5. Brody HDS, Greenbaum S, Gravitz L, Mandrup-Poulsen T, Scully T, Dolgin E, et al. Diabetes. Nature. 2012;485(Suppl. to 17 May):S1–S19.

    PubMed  Google Scholar 

  6. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:a009191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Braun M, Ramracheya R, Rorsman P. Autocrine regulation of insulin secretion. Diabetes Obes Metab. 2012;14:143–51.

    Article  CAS  PubMed  Google Scholar 

  8. Rorsman P, Braun M. Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol. 2013;75:155–79.

    Article  CAS  PubMed  Google Scholar 

  9. Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A. Pancreatic beta-cell identity, glucose sensing and the control of insulin secretion. Biochem J. 2015;466:203–18.

    Article  CAS  PubMed  Google Scholar 

  10. Shen YX, Prinyawiwatkul W, Xu ZM. Insulin: a review of analytical methods. Analyst. 2019;144:4139–48.

    Article  CAS  PubMed  Google Scholar 

  11. Dzianova P, Asai S, Chrudinova M, Kosinova L, Potalitsyn P, Sacha P, et al. The efficiency of insulin production and its content in insulin-expressing model beta-cells correlate with their Zn(2+) levels. Open Biol. 2020;10:200137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiracek J, Zakova L, Marek A. Radiolabeled hormones in insulin research, a minireview. J Labelled Compd Rad. 2020;63:576–81.

    CAS  Google Scholar 

  13. Gavin JR III, Gorden P, Roth J, Archer JA, Buell DN. Characteristics of the human lymphocyte insulin receptor. J Biol Chem. 1973;248:2202–7.

    Article  CAS  PubMed  Google Scholar 

  14. Gorden P, Gavin JR 3rd, Kahn CR, Archer JA, Lesniak M, Hendricks C, et al. Application of radioreceptor assay to circulating insulin, growth hormone, and to their tissue receptors in animals and man. Pharmacol Rev. 1973;25:179–87.

    CAS  PubMed  Google Scholar 

  15. Gavin JR 3rd, Kahn CR, Gorden P, Roth J, Neville DM Jr. Radioreceptor assay of insulin: comparison of plasma and pancreatic insulins and proinsulins. J Clin Endocrinol Metab. 1975;41:438–45.

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki K, Ohsawa N, Kosaka K. Radioreceptor assay for insulin. J Clin Endocrinol Metab. 1976;42:399–402.

    Article  CAS  PubMed  Google Scholar 

  17. Kabuto M, Suzuki K, Ohsawa N, Kosaka K. A radioreceptor assay for insulin: direct measurement of dog pancreatic vein serum insulin. Endocrinol Jpn. 1977;24:173–8.

    Article  CAS  PubMed  Google Scholar 

  18. Gavin JR 3rd, Trivedi B, Daughaday WH. Homologous IM-9 lymphocyte radioreceptor and receptor modulation assays for human serum growth hormone. J Clin Endocrinol Metab. 1982;55:133–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ilondo MM, Vanderschueren-Lodeweyckx M, De Meyts P. Measuring growth hormone activity through receptor and binding protein assays. Horm Res. 1991;36(Suppl. 1):21–6.

    Article  CAS  PubMed  Google Scholar 

  20. Palivec V, Viola CM, Kozak M, Ganderton TR, Krizkova K, Turkenburg JP, et al. Computational and structural evidence for neurotransmitter-mediated modulation of the oligomeric states of human insulin in storage granules. J Biol Chem. 2017;292:8342–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Solinova V, Zakova L, Jiracek J, Kasicka V. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol. Anal Chim Acta. 2019;1052:170–8.

    Article  CAS  PubMed  Google Scholar 

  22. Brezina K, Duboue-Dijon E, Palivec V, Jiracek J, Krizek T, Viola CM, et al. Can arginine inhibit insulin aggregation? A combined protein crystallography, capillary electrophoresis, and molecular simulation study. J Phys Chem B. 2018;122:10069–76.

    Article  CAS  PubMed  Google Scholar 

  23. Miyazaki JI, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, et al. Establishment of a pancreatic beta-cell line that retains glucose-inducible insulin-secretion - special reference to expression of glucose transporter isoforms. Endocrinology. 1990;127:126–32.

    Article  CAS  PubMed  Google Scholar 

  24. Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology. 2004;145:667–78.

    Article  CAS  PubMed  Google Scholar 

  25. Carlsson A, Hallgren IB, Johansson H, Sandler S. Concomitant enzyme-linked immunosorbent assay measurements of rat insulin, rat C-peptide, and rat proinsulin from rat pancreatic islets: effects of prolonged exposure to different glucose concentrations. Endocrinology. 2010;151:5048–52.

    Article  CAS  PubMed  Google Scholar 

  26. Morcavallo A, Genua M, Palummo A, Kletvikova E, Jiracek J, Brzozowski AM, et al. Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J Biol Chem. 2012;287:11422–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Korinek M, Sistek V, Mladkova J, Mikes P, Jiracek J, Selicharova I. Quantification of homocysteine-related metabolites and the role of betaine-homocysteine S-methyltransferase in HepG2 cells. Biomed Chromatogr. 2013;27:111–21.

    Article  CAS  PubMed  Google Scholar 

  28. Malaguarnera R, Sacco A, Voci C, Pandini G, Vigneri R, Belfiore A. Proinsulin binds with high affinity the insulin receptor isoform a and predominantly activates the mitogenic pathway. Endocrinology. 2012;153:2152–63.

    Article  CAS  PubMed  Google Scholar 

  29. Luisier S, Vital-Shmilovici M, Weiss MA, SBH K. Total chemical synthesis of human proinsulin. Chem Commun. 2010;46:8177–9.

    Article  CAS  Google Scholar 

  30. Roderigo-Milne H, Hauge-Evans AC, Persaud SJ, Jones PM. Differential expression of insulin genes 1 and 2 in MIN6 cells and pseudoislets. Biochem Biophys Res Commun. 2002;296:589–95.

    Article  CAS  PubMed  Google Scholar 

  31. Wu GY, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009;37:153–68.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Jeppesen PB, Gregersen S, Chen X, Hermansen K. Dose- and glucose-dependent effects of amino acids on insulin secretion from isolated mouse islets and clonal INS-1E beta-cells. Rev Diabet Stud. 2008;5:232–44.

    Article  PubMed  Google Scholar 

  33. Smith PA, Sakura H, Coles B, Gummerson N, Proks P, Ashcroft FM. Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol-London. 1997;499:625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thams P, Capito K. L-Arginine stimulation of glucose-induced insulin secretion through membrane depolarization and independent of nitric oxide. Eur J Endocrinol. 1999;140:87–93.

    Article  CAS  PubMed  Google Scholar 

  35. Leiss V, Flockerzie K, Novakovic A, Rath M, Schonsiegel A, Birnbaumer L, et al. Insulin secretion stimulated by L-arginine and its metabolite L-ornithine depends on G alpha(i2). Am J Phys. 2014;307:E800–12.

    CAS  Google Scholar 

  36. Docherty K, Carroll RJ, Steiner DF. Conversion of proinsulin to insulin: involvement of a 31,500 molecular weight thiol protease. Proc Natl Acad Sci U S A. 1982;79:4613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Norrman M, Hubalek F, Schluckebier G. Structural characterization of insulin NPH formulations. Eur J Pharm Sci. 2007;30:414–23.

    Article  CAS  PubMed  Google Scholar 

  38. Meijer AJ, Lamers WH, Chamuleau RAFM. Nitrogen-metabolism and ornithine cycle function. Physiol Rev. 1990;70:701–48.

    Article  CAS  PubMed  Google Scholar 

  39. Aynsleygreen A, Alberti KGM. In-vivo stimulation of insulin-secretion by guanidine derivatives in rat. Horm Metab Res. 1974;6:115–20.

    Article  CAS  Google Scholar 

  40. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.

    Article  CAS  PubMed  Google Scholar 

  41. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    Article  CAS  PubMed  Google Scholar 

  42. Callier S, Snapyan M, Le Crom S, Prou D, Vincent JD, Vernier P. Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell. 2003;95:489–502.

    Article  CAS  PubMed  Google Scholar 

  43. Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004;56:331–49.

    Article  CAS  PubMed  Google Scholar 

  44. Ustione A, Piston DW, Harris PE. Minireview: dopaminergic regulation of insulin secretion from the pancreatic islet. Mol Endocrinol. 2013;27:1198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simpson N, Maffei A, Freeby M, Burroughs S, Freyberg Z, Javitch J, et al. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro. Mol Endocrinol. 2012;26:1757–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ustione A, Piston DW. Dopamine synthesis and D3 receptor activation in pancreatic beta-cells regulates insulin secretion and intracellular [Ca(2+)] oscillations. Mol Endocrinol. 2012;26:1928–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ericson LE, Hakanson R, Lundquist I. Accumulation of dopamine in mouse pancreatic B-cells following injection of L-DOPA. Localization to secretory granules and inhibition of insulin secretion. Diabetologia. 1977;13:117–24.

    Article  CAS  PubMed  Google Scholar 

  48. Rubi B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, et al. Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J Biol Chem. 2005;280:36824–32.

    Article  CAS  PubMed  Google Scholar 

  49. Wu WZ, Shang J, Feng Y, Thompson CM, Horwitz S, Thompson JR, et al. Identification of glucose-dependent insulin secretion targets in pancreatic beta cells by combining defined-mechanism compound library screening and siRNA gene silencing. J Biomol Screen. 2008;13:128–34.

    Article  CAS  PubMed  Google Scholar 

  50. Garcia-Tornadu I, Ornstein AM, Chamson-Reig A, Wheeler MB, Hill DJ, Arany E, et al. Disruption of the dopamine D2 receptor impairs insulin secretion and causes glucose intolerance. Endocrinology. 2010;151:1441–50.

    Article  CAS  PubMed  Google Scholar 

  51. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002;71:533–54.

    Article  CAS  PubMed  Google Scholar 

  52. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mawe GM, Hoffman JM. Serotonin signalling in the gut-functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10:473–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two receptors. J Psychopharmacol. 2017;31:1091–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol. 2013;20:14–21.

    Article  CAS  Google Scholar 

  56. Jacobs BL, Azmitia EC. Structure and function of the brain-serotonin system. Physiol Rev. 1992;72:165–229.

    Article  CAS  PubMed  Google Scholar 

  57. Cataldo Bascunan LR, Lyons C, Bennet H, Artner I, Fex M. Serotonergic regulation of insulin secretion. Acta Physiol. 2019;225:e13101.

    Article  CAS  Google Scholar 

  58. Falk B, Hellman B. Evidence for the presence of of biogenic amines in the pancreatic islets. Experientia. 1963;19:139–40.

    Article  Google Scholar 

  59. Falk B, Hellman B. A fluorescent reaction for monoamines in the insulin producing cells of the guinea-pig. Acta Endocrinol. 1964;45:133–8.

    Google Scholar 

  60. Gylfe E. Association between 5-hydroxytryptamine release and insulin-secretion. J Endocrinol. 1978;78:239–48.

    Article  CAS  PubMed  Google Scholar 

  61. Peschke E, Peschke D, Hammer T, Csernus V. Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro. J Pineal Res. 1997;23:156–63.

    Article  CAS  PubMed  Google Scholar 

  62. Paulmann N, Grohmann M, Voigt JP, Bert B, Vowinckel J, Bader M, et al. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol. 2009;7:e1000229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cataldo LR, Mizgier ML, Sagua RB, Jana F, Cardenas C, Llanos P, et al. Prolonged activation of the Htr2b serotonin receptor impairs glucose stimulated insulin secretion and mitochondrial function in MIN6 cells. PLoS One. 2017;12:e0170213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bennet H, Balhuizen A, Medina A, Nitert MD, Laakso EO, Essen S, et al. Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides. 2015;71:113–20.

    Article  CAS  PubMed  Google Scholar 

  65. Amisten S, Neville M, Hawkes R, Persaud SJ, Karpe F, Salehi A. An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacol Therapeut. 2015;146:61–93.

    Article  CAS  Google Scholar 

  66. Machackova K, Mlcochova K, Potalitsyn P, Hankova K, Socha O, Budesinski M, et al. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. J Biol Chem. 2019;294:17371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by the European Regional Development Fund; OP RDE; Project: “Chemical biology for drugging undruggable targets (ChemBioDrug)” (No. CZ.02.1.01/0.0/0.0/16_019/0000729), by Medical Research Council Grant MR/R009066/1. Institutional support was provided by project RVO 61388963 (to the Institute of Organic Chemistry and Biochemistry) of the Czech Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Seiya Asai: Investigation and methodology. Lenka Žáková: Supervision and data curation. Irena Selicharová: Validation and data curation. Aleš Marek: Methodology. Jiří Jiráček: Conceptualization, supervision, and writing.

Corresponding author

Correspondence to Jiří Jiráček.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Source of biological material and animal welfare

All the animal experiments (isolation of pancreatic tissue from Wistar rats) described in this study were performed according to the ethical guidelines for animal experiments and the EU (86/609/EU) and Czech Republic law (Law 246/1992) and were approved by the Committee for experiments with laboratory animals of the Academy of Sciences of the Czech Republic (decision no. 16OZ21899/2020-18134 was issued on December 10, 2020).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

The online version contains supplementary material available at https://doi.org/10.1007/s00216-021-03423-3.

ESM 1

(PDF 910 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asai, S., Žáková, L., Selicharová, I. et al. A radioligand receptor binding assay for measuring of insulin secreted by MIN6 cells after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. Anal Bioanal Chem 413, 4531–4543 (2021). https://doi.org/10.1007/s00216-021-03423-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03423-3

Keywords

Navigation