Skip to main content
Log in

Fully computable a posteriori error bounds for eigenfunctions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

For compact self-adjoint operators in Hilbert spaces, two algorithms are proposed to provide fully computable a posteriori error estimate for eigenfunction approximation. Both algorithms apply well to the case of tight clusters and multiple eigenvalues, under the settings of target eigenvalue problems. Algorithm I is based on the Rayleigh quotient and the min-max principle that characterizes the eigenvalue problems. The formula for the error estimate provided by Algorithm I is easy to compute and applies to problems with limited information of Rayleigh quotients. Algorithm II, as an extension of the Davis–Kahan method, takes advantage of the dual formulation of differential operators along with the Prager–Synge technique and provides greatly improved accuracy of the estimate, especially for the finite element approximations of eigenfunctions. Numerical examples of eigenvalue problems of matrices and the Laplace operators over convex and non-convex domains illustrate the efficiency of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. See https://ganjin.online/xfliu/EigenVecEstimation for source codes and demonstrations of all presented examples.

References

  1. Armentano, M.G., Durán, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 93–101 (2004). ((electronic))

    MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Osborn, J.E.: Eigenvalue problems, Handbook of numerical analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  3. Behnke, H.: The calculation of guaranteed bounds for eigenvalues using complementary variational principles. Comput. 47(1), 11–27 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birkhoff, G., de Boor, C., Swartz, B., Wendroff, B.: Rayleigh-Ritz approximation by piecewise cubic polynomials. SIAM J. Numer. Anal. 3, 188–203 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations. SIAM J. Numer. Anal. 55(5), 2228–2254 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework. Numer. Math. 140(4), 1033–1079 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: Guaranteed a posteriori bounds for eigenvalues and eigenvectors: multiplicities and clusters. Math. Comp. 89(326), 2563–2611 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126(1), 33–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comp. 83(290), 2605–2629 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chatelin, F.: Spectral approximation of linear operators. Academic Press Inc, New York (1983)

    MATH  Google Scholar 

  12. Dari, E.A., Durán, R.G., Padra, C.: A posteriori error estimates for non-conforming approximation of eigenvalue problems. Appl. Numer. Math. 62(5), 580–591 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davis, C., Kahan, W.M.: The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal. 7(1), 1–46 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Debnath, L., Mikusinski, P.: Introduction to Hilbert spaces with applications. Elsevier Academic Press (2005)

  15. Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9(8), 1165–1178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giani, S., Grubišić, L., Hakula, H., Ovall, J.S.: An a posteriori estimator of eigenvalue/eigenvector error for penalty-type discontinuous Galerkin methods. Appl. Math. Comput. 319, 562–574 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Giani, S., Hall, E.J.C.: An a posteriori error estimator for \(hp\)-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems. Math. Models Methods Appl. Sci. 22(10), 1250030-1–1250030-35 (2012)

  18. Goerisch, F., Haunhorst, H.: Eigenwertschranken für Eigenwertaufgaben mit partiellen Differentialgleichungen. Z. Angew. Math. Mech. 65(3), 129–135 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hong, Q., Xie, H., Yue, M., Zhang, N.: Fully computable error bounds for eigenvalue problem. Int. J. Numer. Anal. Model. 15(1–2), 260–270 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Jun, H., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61(1), 196–221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jia, S., Chen, H., Xie, H.: A posteriori error estimator for eigenvalue problems by mixed finite element method. Sci. China Math. 56(5), 887–900 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kato, T.: On the upper and lower bounds of eigenvalues. J. Phys. Soc. Japan 4, 334–339 (1949)

    Article  MathSciNet  Google Scholar 

  23. Lehmann, N.J.: Beiträge zur numerischen Lösung linearer Eigenwertprobleme. I. Z. Angew. Math. Mech. 29, 341–356 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lehmann, N.J.: Beiträge zur numerischen Lösung linearer Eigenwertprobleme. II. Z. Angew. Math. Mech. 30, 1–16 (1950)

    Article  MathSciNet  Google Scholar 

  25. Liao, S.-K., Shu, Y.-C., Liu, X.: Optimal estimation for the Fujino-Morley interpolation error constants. Jpn. J. Ind. Appl. Math. 36(2), 521–542 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, X.: A framework of verified eigenvalue bounds for self-adjoint differential operators. Appl. Math. Comput. 267, 341–355 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Liu, X.: Explicit eigenvalue bounds of differential operators defined by symmetric positive semi-definite bilinear forms. J. of Comp. & Appl. Math. 371, 112666 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, X., Oishi, S.: Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM J. Numer. Anal. 51(3), 1634–1654 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, X., Okayama, T., Oishi, S.: High-Precision Eigenvalue Bound for the Laplacian with Singularities, Computer Mathematics, Springer, pp. 311–323 (2014)

  30. Liu, X., You, C.: Explicit bound for quadratic Lagrange interpolation constant on triangular finite elements. Appl. Math. Comput. 319, 693–701 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Liu, X., Vejchodský, T.: Rigorous and fully computable a posteriori error bounds for eigenfunctions, arXiv preprint arXiv:1904.07903v1, (2019)

  32. Mehrmann, V., Miedlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra Appl. 18(3), 387–409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Meyer, C.: Matrix analysis and applied linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000)

  34. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis, vol. 110. SIAM, Philadelphia (2009)

  35. Nakatsukasa, Y.: Sharp error bounds for Ritz vectors and approximate singular vectors. Math. Comp. 89, 1843–1866 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Quart. Appl. Math. 5, 241–269 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  37. Repin, S.: A posteriori estimates for partial differential equations. Walter de Gruyter GmbH & Co. KG, Berlin (2008)

    Book  MATH  Google Scholar 

  38. Šebestová, I., Vejchodský, T.: Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants. SIAM J. Numer. Anal. 52(1), 308–329 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Toyonaga, K., Nakao, M.T., Watanabe, Y.: Verified numerical computations for multiple and nearly multiple eigenvalues of elliptic operators. J. Comput. Appl. Math. 147(1), 175–190 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vejchodský, T.: Three methods for two-sided bounds of eigenvalues-a comparison. Numer. Methods Partial Differ. Equ. 34(4), 1188–1208 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vejchodský, T.: Flux reconstructions in the Lehmann-Goerisch method for lower bounds on eigenvalues. J. Comput. Appl. Math. 340, 676–690 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xie, M., Xie, H., Liu, X.: Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements. Jpn. J. Ind. Appl. Math. 35(1), 335–354 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, Y., Zhang, Z., Lin, F.: Eigenvalue approximation from below using non-conforming finite elements. Sci. China Ser. A: Math. 53(1), 137–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. You, C., Xie, H., Liu, X.: Guaranteed eigenvalue bounds for the Steklov eigenvalue problem. SIAM J. Numer. Anal. 57(3), 1395–1410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, X., Nakao, M.T., Oishi, S.: Computer-assisted proof for the stationary solution existence of the Navier-Stokes equation over 3D domains. Commun. Nonlinear Sci. Numer. Simul. 108, 106223 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the valuable referees’ comments. Thanks to them the original manuscript considerably improved. The first author also show thanks to Dr. Yuji Nakatsukasa from Oxford University for his introduction of Davis–Kahan’s method.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefeng Liu or Tomáš Vejchodský.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Xuefeng Liu is supported by Japan Society for the Promotion of Science: Fund for the Promotion of Joint International Research (Fostering Joint International Research (A)) 20KK0306, Grant-in-Aid for Scientific Research (B) 20H01820, 21H00998, and Grant-in-Aid for Scientific Research (C) 18K03411. The Tomas Vejchodsky is supported by the Czech Science Foundation, project no. 20-01074S, and by RVO 67985840. This work is also supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center of Kyoto University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Vejchodský, T. Fully computable a posteriori error bounds for eigenfunctions. Numer. Math. 152, 183–221 (2022). https://doi.org/10.1007/s00211-022-01304-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01304-0

Mathematics Subject Classification

Navigation