Skip to main content
Log in

On numerical approximations to fluid–structure interactions involving compressible fluids

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we introduce a numerical scheme for fluid–structure interaction problems in two or three space dimensions. A flexible elastic plate is interacting with a viscous, compressible barotropic fluid. Hence the physical domain of definition (the domain of Eulerian coordinates) is changing in time. We introduce a fully discrete scheme that is stable, satisfies geometric conservation, mass conservation and the positivity of the density. We also prove that the scheme is consistent with the definition of continuous weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Throughout the paper we make use of the standard notation of Bochner, Sobolev and Lebesgue spaces, see for instance [26] for more details.

  2. By “conservative" we mean this operator leads to some conservative properties, such as the geometric conservation law (2.14) and mass conservation (3.3).

  3. Such an approximation can be made precise by taking a cut-off function. We take \(\phi _\epsilon \in C^\infty (-\infty ,\infty )\), such that the s-th derivative \(\phi ^{(s)}_\epsilon (x)=0\) for all \(s\in \mathbb {N}\) and \(x\le 0\) and \(\phi _\epsilon (x)\equiv 1\) for all \(x\in [\epsilon ,\infty )\) and \(0\le \phi '_\epsilon \le \frac{2}{\epsilon }\) and \( | \phi ''_\epsilon |\le \frac{8}{\epsilon ^2}\). Moreover, we denote \((b)_\epsilon \) as the standard convolution for a function \(b:C^\alpha ([0,T])\). Recall that since \(\eta \in C^\alpha \) uniformly we find in particular \(\eta - \epsilon ^\alpha \le (\eta )_\epsilon \le \eta + \epsilon ^\alpha \). Then (for a fixed t) we define \( \Psi _{\epsilon }(t,r, x_d):= (1-\phi _\epsilon ({ x_d-H-(\eta )_\epsilon (t)+2\epsilon ^\alpha }))\Psi (t,r, x_d)+\phi _\epsilon ({ x_d-H-(\eta )_\epsilon (t)+2\epsilon ^\alpha })\psi (t,r), \) which satisfies (3.10).

  4. For the consistency actually we will assume that \(h\sim \tau \).

  5. Note that due to (4.7) the assumption \(\left\Vert \Pi _p \eta _{h,\tau }-\eta \right\Vert _\infty <\epsilon \) follows from \(\left\Vert \eta _{h,\tau }-\eta \right\Vert _\infty <\epsilon \), provided h is sufficiently small.

References

  1. Balázsová, M., Feistauer, M., Vlasák, M.: Stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains. ESAIM Math. Model. Numer. Anal. 52(6), 2327–2356 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bemelmans, J., Galdi, G.P., Kyed, M.: On the steady motion of a coupled system solid-liquid. Mem. Amer. Math. Soc. 226(1060), vi+89 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Boulakia, Muriel: Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid. J. Math. Fluid Mech. 9(2), 262–294 (2007)

    Article  MathSciNet  Google Scholar 

  4. Breit, D., Schwarzacher, S.: Compressible fluids interacting with a linear-elastic shell. Arch. Rational Mech. Anal. 228, 495–562 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bodnar, T., Galdi, G.P., Nečasová, Š (eds.): fluid-structure Interaction and Biomedical Applications. Birkhäuser/Springer, Basel (2014)

    MATH  Google Scholar 

  6. Brenner, S.C.: Poincaré-Friedrichs Inequalities for Piecewise \(H^1\) Functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    Article  MathSciNet  Google Scholar 

  7. Brenner, S.C.: Korn’s inequalities for Piecewise \(H^1\) vector fields. Math. Comput. 73(247), 1067–1087 (2004)

    Article  Google Scholar 

  8. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer Series in computational mathematicsSpringer Series in computational mathematicsSpringer Series in computational mathematics, Springer, NY (2013)

    Book  Google Scholar 

  9. Bukač, M., Čanić, S., Muha, B.: A partitioned scheme for fluid-composite structure interaction problems. J. Comput. Phys. 281, 493–517 (2015)

    Article  MathSciNet  Google Scholar 

  10. Bukač, M., Čanić, S., Tambačac, J., Wang, Y.: Fluid-structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: a four stent computational study. Comput. Methods Appl. Mech. Eng. 350, 679–700 (2019)

    Article  MathSciNet  Google Scholar 

  11. Bukač, M., Muha, B.: Stability and convergence analysis of the kinematically coupled scheme and its extensions for the fluid-structure interaction. SIAM J. Numer. Anal. 54(5), 3032–3061 (2016)

    Article  MathSciNet  Google Scholar 

  12. Čanić, S., Muha, B., Bukač, M.: Stability of the kinematically coupled b-scheme for fluid-structure interaction problems in hemodynamics. Int. J. Numer. Anal. Model. 12(1), 54–80 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Clough, R.W., Tocher, J.L.: Finite element stiffness matrices for analysis of plates in bending. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics, 1965

  14. Ciarlet, P.G.: Mathematical Elasticity Three-Dimensional Elasticity, vol. 1. Academic Press, Elsevier (1988)

    MATH  Google Scholar 

  15. Ciarlet, P.G: The Finite Element Method for Elliptic Problems. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174]. Classics in Applied Mathematics, 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. xxviii+530 pp (2002)

  16. Ciarlet, P.G., Roquefort, A.: Justification of a two-dimensional nonlinear shell model of Koiter’s type. Chin. Ann. Math. 22(2), 129–144 (2001)

    Article  MathSciNet  Google Scholar 

  17. Coutand, Daniel, Shkoller, Steve: The interaction between quasilinear elastodynamics and the Navier–Stokes equations. Arch. Ration. Mech. Anal. 179, 303–352 (2006)

    Article  MathSciNet  Google Scholar 

  18. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7(3), 33–75 (1973)

  19. Dervieux, A., Farhat, C., Koobus, B., Vázquez, M.: Total energy conservation in ALE schemes for compressible flows. Euro. J. Comput. Mech. 19(4), 337–363 (2010)

    Article  Google Scholar 

  20. Desjardins, B., Esteban, M.J.: On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differ. Equ. 25(7–8), 1399–1413 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Desjardins, B., Esteban, M.J., Grandmont, C., Le Tallec, P.: Weak solutions for a fluid-elastic structure interaction model. Rev. Mat. Complut. 14(2), 523–538 (2001)

    Article  MathSciNet  Google Scholar 

  22. Ern, A., Guermond, J-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, Vol. 159, Springer (2004)

  23. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: Convergence of a finite volume scheme for the compressible Navier–Stokes system. ESAIM: M2AN. 53(6), 1957–1979 (2019)

  24. Feireisl, E., Lukáčová-Medvid’ová, M., Nečasová, Š, Novotný, A., She, B.: Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier-Stokes Equations in the Low Mach Number Regime. Multiscale Model. Simul. 16(1), 150–183 (2018)

  25. Feireisl, E., Karper, T., Pokorný, M.: Mathematical theory of compressible viscous fluids: Analysis and numerics. Birkhäuser-Verlag, Basel (2017)

    MATH  Google Scholar 

  26. Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel (2009)

    Book  Google Scholar 

  27. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations of compressible isentropic fluids. J. Math. Fluid. Mech. 3, 358–392 (2001)

    Article  MathSciNet  Google Scholar 

  28. Feistauer, M., Kučera, V., Prokopová, J.: Discontinuous Galerkin solution of compressible flow in time-dependent domains. Math. Comput. Simulat. 80(8), 1612–1623 (2010)

    Article  MathSciNet  Google Scholar 

  29. Frei, S., Richter, T., Wick, T.: Long-term simulation of large deformation, mechano-chemical fluid-structure interactions in ALE and fully Eulerian coordinates. J. Comput. Phys. 321, 874–891 (2016)

    Article  MathSciNet  Google Scholar 

  30. Gallouët, T., Maltese, D., Novotný, A.: Error estimates for the implicit MAC scheme for the compressible Navier–Stokes equations. Numer. Math. 141(2), 495–567 (2019)

    Article  MathSciNet  Google Scholar 

  31. Gallouët, T., Herbin, R., Maltese, D., Novotný, A.: Error estimates for a numerical approximation to the compressible barotropic Navier-Stokes equations. IMA J. Numer. Anal. 36, 543–592 (2016)

    Article  MathSciNet  Google Scholar 

  32. Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40, 716–737 (2008)

    Article  MathSciNet  Google Scholar 

  33. Grandmont, C., Hillairet, M.: Existence of global strong solutions to a beam-fluid interaction system. Arch. Ration. Mech. Anal. 220, 1283–1333 (2016)

    Article  MathSciNet  Google Scholar 

  34. Hošek, R., She, B.: Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension. J. Numer. Math. 26(3), 111–140 (2018)

    Article  MathSciNet  Google Scholar 

  35. Hošek, R., She, B.: Convergent numerical method for the Navier–Stokes-Fourier system: a stabilized scheme. IMA J. Numer. Anal. 39, 2045–2068 (2019)

    Article  MathSciNet  Google Scholar 

  36. Hundertmark-Zaušková, A., Lukáčová-Medviďová, M.: Numerical study of shear-dependent non-Newtonian fluids in compliant vessels. Comput. Math. App. 60(3), 572–590 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Lengeler, D., Rŭžička, M.: Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell. Arch. Rat. Mech. Anal. 211(1), 205–255 (2014)

    Article  MathSciNet  Google Scholar 

  38. Lukáčová-Medviďová, M., Rusnaková, G., Hundertmark-Zaušková, A.: Kinematic splitting algorithm for fluid-structure interaction in hemodynamics. Comput. Methods Appl. Mech. Engrg. 265, 83–106 (2013)

    Article  MathSciNet  Google Scholar 

  39. Karper, T.: A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125(3), 441–510 (2013)

    Article  MathSciNet  Google Scholar 

  40. Kamakoti, R., Shyy, W.: Fluid-structure interaction for aeroelastic applications. Progress Aerospace Sci. 40, 535–558 (2004)

    Article  Google Scholar 

  41. Koiter, W. T.: On the foundations of the linear theory of thin elastic shells. I, II. Nederl. Akad. Wetensch. Proc. Ser. B 73, 169–182; ibid, 73, 183–195 (1970)

  42. Kosík, A., Feistauer, M., Hadrava, M., Horáček, J.: Numerical simulation of the interaction between a nonlinear elastic structure and compressible flow by the discontinuous Galerkin method. Appl. Math. Comput. 267, 382–396 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Kwon, Y., Novotný, A.: Consistency, convergence and error estimates for a mixed finite element-finite volume scheme to compressible Navier–Stokes equation with general inflow/outflow boundary data. To appear on IMA J. Numer. Anal. https://doi.org/10.1093/imanum/draa093(2021)

  44. Lions, P.L.: Mathematical Topics in Fluid Mechanics, Compressible Models, vol. 2. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1998)

    MATH  Google Scholar 

  45. Muha, B., Čanić, S.: Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207(3), 919–968 (2013)

    Article  MathSciNet  Google Scholar 

  46. Muha, B., Čanić, S.: Existence of a solution to a fluid-multi-layered-structure interaction problem. J. Differ. Equ. 256, 658–706 (2014)

    Article  MathSciNet  Google Scholar 

  47. Muha, B., Schwarzacher, S.: Existence and regularity for weak solutions for a fluid interacting with a non-linear shell in 3d. arXiv:1906.01962, (2019)

  48. Richter, T.: fluid-structure interactions: models, analysis and finite elements, vol. 118. Springer, NY (2017)

    Book  Google Scholar 

  49. Rindler, F., Schwarzacher, S., Süli, E.: Regularity and approximation of strong solutions to rate-independent systems. Math. Models Methods Appl. Sci. 27(13), 2511–2556 (2017)

    Article  MathSciNet  Google Scholar 

  50. Trifunović, S., Wang, Y.-G.: On the interaction problem between a compressible viscous fluid and a nonlinear thermoelastic plate. arXiv:2010.01639, (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bangwei She.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both authors thank the support of the primus research programme of Charles University, PRIMUS/19/SCI/01 and the program GJ19-11707Y of the Czech national grant agency (GAČR). S. S also thanks the University Centre UNCE/SCI/023 from Charles University. The institute of Mathematics of the Czech Academy of Sciences is supported by RVO: 67985840.

A: Appendix

A: Appendix

1.1 A.1 Proof of Theorem 3: existence of a numerical solution

We aim to prove Theorem 3 for the existence of a numerical solution. Before that let us first introduce an abstract theorem, see [30, Theorem A.1].

Theorem 6

([30, Theorem A.1]) Let M and N be positive integers. Let \( C_2>\epsilon >0\) and \(C_1>0\) be real numbers. Let V and W be defined as follows:

where the notation \(x > c\) means that each component of x is greater than c, and \(\Vert \cdot \Vert \) is a norm defined over \(R ^N\). Let F be a continuous function from \(V \times [0,1]\) to \(R ^M \times R ^N\) satisfying:

  1. 1.

    \(\forall \, \zeta \in [0,1] \), if \( v \in V \) is such that \( F(v,\zeta )=0 \) then \( v \in W \);

  2. 2.

    The equation \(F (v, 0)=0\) is a linear system on v and has a solution in W.

Then there exists at least a solution \( v \in W\) such that \(F(v,1) = 0\).

Now we are ready to show Theorem 3.

Proof

Let us denote , and define

It is obvious that the degrees of freedom of the spaces \(Q_{h,\tau }\) and \(\mathbb {Q}\) are finite. Indeed, the space \(Q_{h,\tau }\) can be identified by the set of values \(\varrho _K\) for all \(K \in \mathcal {T}_{h,\tau }^{k}\), therefore \(Q_{h,\tau }\subset \mathbb {R}^M\), where M is the total number of elements of \(\mathcal {T}_{h,\tau }^{k}\). Analogously, \(\mathbb {Q}\subset \mathbb {R}^N\), where N is the sum of d times degrees of freedom of \(\mathcal {E}^k\) and the degrees of freedom of \(\Sigma \). Let us consider the mapping

$$\begin{aligned} F : \ V \times [0,1]\longrightarrow Q_h\times \mathbb {Q}. \qquad (\varrho _{h,\tau }^k,U_{h,\tau }^k , \zeta )\longmapsto ( \varrho ^\star , U^\star ) =F(\varrho _{h,\tau }^k,U_{h,\tau }^k ,\zeta ), \end{aligned}$$

where \(( \varrho ^\star , U^\star ) \in Q_{h,\tau }\times \mathbb {Q}\) is such that

$$\begin{aligned}&\int _{\Omega _{h,\tau }} \varrho ^\star {\varphi }_{h,\tau } \,\mathrm{d} {x} = \int _{\Omega _{h,\tau }} \frac{\varrho _{h,\tau }^k -\varrho _{h,\tau }^{k-1}\circ {X}_k^{k-1}\mathcal {F}_k^{k-1}}{\tau } {\varphi }_{h,\tau } \,\mathrm{d} {x}\nonumber \\&\qquad + \zeta \int _{\Omega _{h,\tau }} \mathrm{div}^{\mathrm{up}}_{h,\tau }( \varrho _{h,\tau }^{k}, \mathbf {v}_{h,\tau }^{k} ){\varphi }_{h,\tau } \,\mathrm{d} {x} ; \end{aligned}$$
(A.1a)
$$\begin{aligned}&\int _{\Omega _{h,\tau }} U^\star \cdot {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} \nonumber \\&\quad = \int _{\Omega _{h,\tau }} \frac{\varrho _{h,\tau }^k \Pi _\mathcal {T}[\mathbf {u}_{h,\tau }^{k}] - (\varrho _{h,\tau }^{k-1}\Pi _\mathcal {T}[\mathbf {u}_{h,\tau }^{k-1}]) \circ {X}_k^{k-1}\mathcal {F}_k^{k-1}}{\tau } \cdot {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x}\nonumber \\&\qquad + \int _{\Sigma } \frac{ z_{h,\tau }^{k} - z_{h,\tau }^{k-1} }{\tau }{\psi }_{h,\tau } \mathrm{d}r + \int _{\Sigma } \Delta \eta _{h,\tau }^{k} \Delta {\psi }_{h,\tau } \mathrm{d}r \nonumber \\&\qquad - \int _{\Omega _{h,\tau }} \varrho _{h,\tau }^k \mathbf {f}_\tau ^{k}\cdot {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} + \int _{\Sigma } g_\tau ^{k} {\psi }_{h,\tau } \mathrm{d}r\nonumber \\&\qquad +\zeta \int _{\Omega _{h,\tau }} \mathrm{div}^{\mathrm{up}}_{h,\tau }(\varrho _{h,\tau }^{k} \Pi _\mathcal {T}[\mathbf {u}_{h,\tau }^{k}], \mathbf {v}_{h,\tau }^{k} ) \cdot {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} - \zeta \int _{\Omega _{h,\tau }} p(\varrho _{h,\tau }^{k}) \mathrm{div}{\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x}\nonumber \\&\qquad + \zeta \lambda \int _{\Omega _{h,\tau }} \mathrm{div}\mathbf {u}_{h,\tau }^{k} \mathrm{div}{\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} + \zeta 2\mu \int _{\Omega _{h,\tau }} \mathbf {D}( \mathbf {u}_{h,\tau }^{k} ) : \nabla {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} \nonumber \\&\qquad + (1-\zeta ) \mu \int _{\Omega _{h,\tau }} \frac{1}{\mathcal {F}^{k}} { \left( \nabla \mathbf {u}_{h,\tau }^k \mathbb {J}^k + (\mathbb {J}^k)^T \nabla ^T\mathbf {u}_{h,\tau }^k \right) : \left( \nabla {\varvec{\Psi }}_{h,\tau }\mathbb {J}^k \right) } \,\mathrm{d} {x}\nonumber \\&\qquad + \zeta 2\mu \sum _{\sigma \in \mathcal {E}_{\mathrm{I}}}\int _{\sigma } \frac{1}{h} \left[ \! \left[ \mathbf {u}_{h,\tau }^k\right] \! \right] \cdot \left[ \! \left[ {\varvec{\Psi }}_{h,\tau }\right] \! \right] \mathrm{d}S(x) \nonumber \\&\qquad + (1-\zeta ) 2\mu \sum _{\sigma \in \mathcal {E}_{\mathrm{I}}}\int _{\sigma } \frac{1}{h} \left[ \! \left[ \mathbf {u}_{h,\tau }^k\right] \! \right] \cdot \left[ \! \left[ {\varvec{\Psi }}_{h,\tau }\right] \! \right] \frac{1}{ | \mathcal {F}^{k}(\mathbb {J}^k)^{-T} \widehat{\mathbf {n}} | } \mathrm{d}S(x) ; \end{aligned}$$
(A.1b)

where \( {\varvec{\Psi }}_{h,\tau }= ({\varvec{\Psi }}_{h,\tau }, {\psi }_{h,\tau }), \quad \eta _{h,\tau }^k = \eta _{h,\tau }^{k-1} + \tau z_{h,\tau }^k, \quad \mathbf {u}_{h,\tau }^k|_{\Sigma } = z_{h,\tau }^k \mathbf {e}_d , \quad \mathcal {F}_k^{k-1}= \left( H + \eta _{h,\tau }^{k-1}\right) /\left( H + \eta _{h,\tau }^{k}\right) . \)

It is easy to check that F is continuous. Indeed, it is a one to one mapping, since the values of \(\varrho ^\star \) and \(U^\star \) can be determined by setting \({\varphi }_{h,\tau }= 1_{K}\) in (A.1a), and \((\Phi _\tau )_i=1_{D_\sigma }, (\Phi _\tau )_j=0\) for \(j\ne i\) in (A.1b).

Let \((\varrho _{h,\tau }^k,U_{h,\tau }^k ) \in Q_h\times \mathbb {Q}\) and \(\zeta \in [0,1]\) such that \(F(\varrho _{h,\tau }^k,U_{h,\tau }^k , \zeta )=(0,0)\) (in particular \(\varrho _{h,\tau }^k>0\)). Then for any \(\big ({\varphi }_{h,\tau }, {\varvec{\Phi }}_{h,\tau }= ({\varvec{\Psi }}_{h,\tau }, {\psi }_{h,\tau }) \big )\in Q_h\times \mathbb {Q}\)

$$\begin{aligned}&\int _{\Omega _{h,\tau }} \frac{\varrho _{h,\tau }^k -\varrho _{h,\tau }^{k-1} \circ {X}_k^{k-1}\mathcal {F}_k^{k-1}}{\tau } {\varphi }_{h,\tau } \,\mathrm{d} {x} \nonumber \\&\qquad + \zeta \int _{\Omega _{h,\tau }} \mathrm{div}^{\mathrm{up}}_{h,\tau }( \varrho _{h,\tau }^{k}, \mathbf {v}_{h,\tau }^{k} ){\varphi }_{h,\tau } \,\mathrm{d} {x} =0; \end{aligned}$$
(A.2a)
$$\begin{aligned}&\int _{\Omega _{h,\tau }} \frac{\varrho _{h,\tau }^k \Pi _\mathcal {T}[\mathbf {u}_{h,\tau }^{k}] -(\varrho _{h,\tau }^{k-1}\Pi _\mathcal {T}[\mathbf {u}_{h,\tau }^{k-1}]) \circ {X}_k^{k-1}\mathcal {F}_k^{k-1}}{\tau } \cdot {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} \nonumber \\&\qquad + \int _{\Sigma } \frac{ z_{h,\tau }^{k} - z_{h,\tau }^{k-1} }{\tau }{\psi }_{h,\tau } \mathrm{d}r\nonumber \\&\qquad + \int _{\Sigma } \Delta \eta _{h,\tau }^{k} \Delta {\psi }_{h,\tau } \mathrm{d}r - \int _{\Omega _{h,\tau }} \varrho _{h,\tau }^k \mathbf {f}_\tau ^{k}\cdot {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} + \int _{\Sigma } g_\tau ^{k} {\psi }_{h,\tau } \mathrm{d}r\nonumber \\&\qquad +\zeta \int _{\Omega _{h,\tau }} \mathrm{div}^{\mathrm{up}}_{h,\tau }(\varrho _{h,\tau }^{k} \Pi _\mathcal {T}[\mathbf {u}_{h,\tau }^{k}], \mathbf {v}_{h,\tau }^{k} ) \cdot {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} \nonumber \\&\qquad -\zeta \int _{\Omega _{h,\tau }} p(\varrho _{h,\tau }^{k}) \mathrm{div}{\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} + \zeta \lambda \int _{\Omega _{h,\tau }} \mathrm{div}\mathbf {u}_{h,\tau }^{k} \mathrm{div}{\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x}\nonumber \\&\qquad + \zeta 2\mu \int _{\Omega _{h,\tau }} \mathbf {D}( \mathbf {u}_{h,\tau }^{k} ) : \nabla {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} \nonumber \\&\qquad +(1-\zeta ) \mu \int _{\Omega _{h,\tau }} \frac{1}{\mathcal {F}^{k}} { \left( \nabla \mathbf {u}_{h,\tau }^k \mathbb {J}^k + (\mathbb {J}^k)^T \nabla ^T\mathbf {u}_{h,\tau }^k \right) : \left( \nabla {\varvec{\Psi }}_{h,\tau }\mathbb {J}^k \right) } \,\mathrm{d} {x}\nonumber \\&\qquad + \zeta 2\mu \sum _{\sigma \in \mathcal {E}_{\mathrm{I}}}\int _{\sigma } \frac{1}{h} \left[ \! \left[ \mathbf {u}_{h,\tau }^k\right] \! \right] \cdot \left[ \! \left[ {\varvec{\Psi }}_{h,\tau }\right] \! \right] \mathrm{d}S(x) \nonumber \\&\qquad + (1-\zeta ) 2\mu \sum _{\sigma \in \mathcal {E}_{\mathrm{I}}}\int _{\sigma } \frac{1}{h} \left[ \! \left[ \mathbf {u}_{h,\tau }^k\right] \! \right] \cdot \left[ \! \left[ {\varvec{\Psi }}_{h,\tau }\right] \! \right] \frac{1}{ | \mathcal {F}^{k}(\mathbb {J}^k)^{-T} \widehat{\mathbf {n}} | } \mathrm{d}S(x) . \end{aligned}$$
(A.2b)

Taking \({\varphi }_{h,\tau }=1\) as a test function in (A.2a) we obtain

$$\begin{aligned} \left\Vert \varrho _{h,\tau }^k\right\Vert _{L^1(\Omega _{h,\tau })}= \int _{\Omega _{h,\tau }^k} \varrho _{h,\tau }^k \,\mathrm{d} {x} = \int _{\Omega _{h,\tau }^{k-1}} \varrho _{h,\tau }^{k-1} \,\mathrm{d} {x} >0, \end{aligned}$$
(A.3)

which indicates the boundedness of \(\varrho _{h,\tau }^k\) in the \(L^1\) norm, and thus in all norms as the problem is of finite dimension. Following the same argument as Lemma 3 we know that \(\varrho _{h,\tau }^k \ge 0\) provided \(\varrho _{h,\tau }^{k-1} \ge 0\).

Taking \({\varvec{\Phi }}_{h,\tau }=(\mathbf {u}_{h,\tau }^k, z_{h,\tau }^k)\) as the test function in (A.2b) and follow the proof of Theorem (1) gives

$$\begin{aligned} \left\Vert U_{h,\tau }^k \right\Vert := \left\Vert \nabla \mathbf {u}_{h,\tau }^k\right\Vert _{L^2(\Omega _{h,\tau })} + \left\Vert z_{h,\tau }^k\right\Vert _{L^2(\Sigma )} \le C_1 \end{aligned}$$
(A.4)

where \(C_1\) depends on the data of the problem.

Further, let \(K\in \mathcal {T}_{h,\tau }^{k}\) be such that \(\varrho _K^k\) is the smallest, i.e., \( \varrho _K^k \le \varrho _L^k\) for all \(L\in \mathcal {T}_{h,\tau }^{k}\). We denote \(K'= \mathcal {A}_{h,\tau }^{k-1}\circ (\mathcal {A}_{h,\tau }^{k})^{-1}(K)\). Then a straightforward computation gives

Thus \( \varrho _{h,\tau }^k \ge \varrho _K^k \ge \frac{ | K' |}{ | K |} \frac{\varrho ^{k-1}_{K'} }{1 + \tau \zeta | (\mathrm{div}\mathbf {v}_{h,\tau }^k)_K | } >0. \) Consequently, by virtue of (A.4) \( \varrho _{h,\tau }^k > \epsilon \), where \(\epsilon \) depends only on the data of the problem. Further, we get from (A.3) that \( \varrho _{h,\tau }^k \le \frac{ \int _{\Omega _{h,\tau }^{k-1}} \varrho _{h,\tau }^{k-1} \,\mathrm{d} {x}}{\min _{K\in \mathcal {T}_{h,\tau }^{k}} |K|}\), which indicates the existence of \(C_2>0\) such that \(\varrho _{h,\tau }^k <C_2\). Therefore, Hypothesis 1 of Theorem 6 is satisfied.

Next, we proceed to show that Hypothesis 2 of Theorem 6 is satisfied. Let \(\zeta =0\) then the system \(F(\varrho _{h,\tau }^k,U_{h,\tau }^k )=0\) reads

$$\begin{aligned}&\varrho _{h,\tau }^k = \varrho _{h,\tau }^{k-1} \circ {X}_k^{k-1}\mathcal {F}_k^{k-1}; \end{aligned}$$
(A.5a)
$$\begin{aligned}&\int _{\Omega _{h,\tau }} \frac{\varrho _{h,\tau }^k \Pi _\mathcal {T}[\mathbf {u}_{h,\tau }^{k}] -(\varrho _{h,\tau }^{k-1} \Pi _\mathcal {T}[\mathbf {u}_{h,\tau }^{k-1}] ) \circ {X}_k^{k-1}\mathcal {F}_k^{k-1}}{\tau } \cdot {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x}\nonumber \\&\quad + \int _{\Sigma } \frac{ z_{h,\tau }^{k} - z_{h,\tau }^{k-1} }{\tau }{\psi }_{h,\tau } \mathrm{d}r\nonumber \\&\quad + \mu \int _{\Omega _{h,\tau }} \frac{1}{\mathcal {F}^{k}} { \left( \nabla \mathbf {u}_{h,\tau }^k \mathbb {J}^k + (\mathbb {J}^k)^T \nabla ^T\mathbf {u}_{h,\tau }^k \right) : \left( \nabla {\varvec{\Psi }}_{h,\tau }\mathbb {J}^k \right) } \,\mathrm{d} {x} \nonumber \\&\quad + 2\mu \sum _{\sigma \in \mathcal {E}_{\mathrm{I}}}\int _{\sigma } \frac{1}{h} \left[ \! \left[ \mathbf {u}_{h,\tau }^k\right] \! \right] \cdot \left[ \! \left[ {\varvec{\Psi }}_{h,\tau }\right] \! \right] \frac{1}{ | \mathcal {F}^{k}(\mathbb {J}^k)^{-T} \widehat{\mathbf {n}} | } \mathrm{d}S(x)\nonumber \\&\quad + \int _{\Sigma } \left( \alpha \Delta \eta _{h,\tau }^{k} \Delta {\psi }_{h,\tau }+ \beta \nabla \eta _{h,\tau }^{k} \nabla {\psi }_{h,\tau }\right) \mathrm{d}r \nonumber \\&\quad - \int _{\Omega _{h,\tau }} \varrho _{h,\tau }^k \mathbf {f}_{h,\tau }^{k}\cdot {\varvec{\Psi }}_{h,\tau } \,\mathrm{d} {x} + \int _{\Sigma } g_\tau ^{k} {\psi }_{h,\tau } \mathrm{d}r =0. \end{aligned}$$
(A.5b)

To solve the above system (A.5), we further reformulate it on the reference domain according to (2.10)

$$\begin{aligned}&\widehat{\varrho }_{h,\tau }^k \mathcal {F}^{k}= \widehat{\varrho }_{h,\tau }^{k-1}\mathcal {F}^{k-1}; \end{aligned}$$
(A.6a)
$$\begin{aligned}&\quad \int _{\widehat{\Omega }} \widehat{\varrho }_{h,\tau }^{k-1}\mathcal {F}^{k-1}\frac{\Pi _\mathcal {T}[\widehat{\mathbf {u}}_{h,\tau }^{k}] -\Pi _\mathcal {T}[\widehat{\mathbf {u}}_{h,\tau }^{k-1}]}{\tau } \cdot \widehat{\varvec{\Psi }}_{h,\tau } \,\mathrm{d} \widehat{x}\nonumber \\&\quad + \int _{\Sigma } \frac{ z_{h,\tau }^{k} - z_{h,\tau }^{k-1} }{\tau }{\psi }_{h,\tau } \mathrm{d}r + 2\mu \sum _{\sigma \in \widehat{\mathcal {E}_{\mathrm{I}}}}\int _{\sigma } \frac{1}{h} \left[ \! \left[ \widehat{\mathbf {u}}_{h,\tau }^k\right] \! \right] \cdot \left[ \! \left[ \widehat{\varvec{\Psi }}_{h,\tau }\right] \! \right] \mathrm{d}S(\widehat{x})\nonumber \\&\quad + 2\mu \int _{\widehat{\Omega }} \widehat{\mathbf {D}}( \widehat{\mathbf {u}}_{h,\tau }^{k} ) : \widehat{ \nabla } \widehat{\varvec{\Psi }}_{h,\tau } \,\mathrm{d} \widehat{x} + \int _{\Sigma } \left( \alpha \Delta \eta _{h,\tau }^{k} \Delta {\psi }_{h,\tau }+ \beta \nabla \eta _{h,\tau }^{k} \nabla {\psi }_{h,\tau }\right) \mathrm{d}r\nonumber \\&\quad - \int _{\widehat{\Omega }} \widehat{\mathbf {f}}_{\tau }^{k}\cdot \widehat{\varvec{\Psi }}_{h,\tau }\widehat{\varrho }_{h,\tau }^{k-1} \mathcal {F}^{k-1} \,\mathrm{d} \widehat{x} + \int _{\Sigma } g^{k} {\psi }_{h,\tau } \mathrm{d}r =0, \end{aligned}$$
(A.6b)

where \(\mathcal {F}^{k-1}= 1+ \eta _{h,\tau }^{k-1}/H\) is determined by \(\eta _{h,\tau }^{k-1}\). Realizing that (A.6b) is a linear system with a matrix being block-wise symmetric positive definite, we know that there exists exactly one solution \(\widehat{U}_{h,\tau }^k =(\widehat{\mathbf {u}}_{h,\tau }^k, z_{h,\tau }^k)\). Then using the fact \(\eta _{h,\tau }^k = \eta _{h,\tau }^{k-1} + \tau z_{h,\tau }^k\) we get \(\eta _{h,\tau }^k\) and \(\mathcal {A}_{h,\tau }^{k}\). Further, it is straightforward that \(\mathbf {u}_{h,\tau }^k=\widehat{\mathbf {u}}_{h,\tau }^k\circ \mathcal {A}_{h,\tau }^{k}(\widehat{x})\). Finally, substituting \(\eta _{h,\tau }^k\) into (A.6a) we obtain the solution for \(\varrho _{h,\tau }^k\). Obviously, \(\varrho _{h,\tau }^k>0\) as long as no self touching. Thus the solution \((\varrho _{h,\tau }^k,U_{h,\tau }^k )\) belongs to W, which implies Hypothesis 2 of Theorem 6.

We have shown that both hypotheses of Theorem 6 hold. Applying Theorem 6 finishes the proof. \(\square \)

1.2 A.2 Proof of Lemma 8: renormalization

Here we show the validity of the discrete renormalized equation stated in Lemma 8 for the discrete continuity problem (4.17a).

Proof

Firstly, we set \({\varphi }_{h,\tau }=B'(\varrho )\) in (4.17a) and obtain

Next, recalling (3.4), we know there exist \(\xi \in \mathrm{co}\{ \varrho _{h,\tau }^{k-1}\circ {X}_k^{k-1} , \varrho _{h,\tau }^{k} \}\) such that

where

Further, by recalling the definition of the upwind flux (4.10), and using again the Taylor expansion, we reformulate the convective term as

where

Moreover, using the facts

we obtain

Consequently, we derive

Finally, collecting the above terms and seeing \(\mathbf {v}_{h,\tau }^k + \mathbf {w}_{h,\tau }^k= \mathbf {u}_{h,\tau }^k\), we complete the proof, i.e.,

\(\square \)

1.3 A.3 Proof of Theorem 4: energy stability

Here we prove the energy stability stated in Theorem 4 for the discrete scheme (4.17).

Proof

Setting \({\varphi }_{h,\tau }= - \frac{\left| \Pi _\mathcal {T}[ \mathbf {u}_{h,\tau }^{k}]\right| ^2}{2}\) in (4.17a) and \(({\varvec{\Psi }}_{h,\tau },{\psi }_{h,\tau }) = (\mathbf {u}_{h,\tau }^{k}, z_{h,\tau }^{k})\) in (4.17b) we get \(\sum _{i=1}^2 I_i=0\) and \(\sum _{i=3}^{9} I_i=0\) respectively, where

Now we proceed with the summation of all the \(I_i\) terms for \(i=1,\ldots ,9\).

Term \((I_1+I_3+I_8)+(I_6+I_7)+I_9\). Firstly, analogously as in the proof of Theorem 1 we have

Term \(I_2+I_4\). For the convective terms, we have using the fact that \(\Pi _\mathcal {T}[\mathbf {u}_{h,\tau }]\) and \(\mathrm{div}^{\mathrm{up}}_{h,\tau }\left( \varrho _{h,\tau }^k \Pi _\mathcal {T}[ \mathbf {u}]^{k}_h , \mathbf {v}_{h,\tau }^{k} \right) \) are constant on each \(K\in \mathcal {T}_{h,\tau }\) and the upwind divergence

Pressure term \(I_{5} \). Recalling the discrete internal energy equation (4.20), we can rewrite the pressure term as

where \(D_1\) and \(D_2\) are given in (4.21). Collecting all the above terms, we get

We finish the proof by summing up the above equation for \(k=1,\ldots ,N\) and multiplying with \(\tau \). \(\square \)

1.4 A.4 Proof of Lemma 10: useful estimates

Proof

Item 1 has been reported by [23, Lemma 3.5]. Item 2 has been reported by [31, Lemma 4.3]. Item 4 has been reported by [25, Chaper 9, Lemma 7]. We are only left with the proof of Item 3. We start the proof with the a-priori estimates on \(\mathbf {v}_{h,\tau }\)

where we used (4.14) for \(\mathbf {u}_{h,\tau }\) and (4.28) for \(\mathbf {w}_{h,\tau }\). On one hand, for \(\gamma \ge 2\), we employ (4.30) to get

On the other hand, it is easy to check for \(\gamma \in (1,2)\) that \(\mathcal {H}''(r)=a r^{\gamma -2} \ge a\) if \(r\le 1\) and \(r \mathcal {H}''(r)= ar^{\gamma -1} \ge a\) if \(r\ge 1\). Therefore

$$\begin{aligned} \mathcal {H}''(r)(1+r) \ge a \text{ for } \text{ all } r \in (0,\infty ) \end{aligned}$$

Applying these inequalities together with Hölder’s inequality, and the estimate (4.22) we derive (by choosing \(\varrho _{h,\tau }^\dagger \) conveniently and (4.13)) that

Then, for \(\gamma \in [6/5, 2)\) we have \(I_1 {\mathop {\sim }\limits ^{<}}h^{-\frac{1}{2}}\tau ^{-\frac{1}{4}}\). Concerning \(\gamma \in (1,6/5)\) we deduce by inverse estimate (4.14) that

which completes the proof of the first estimate (4.31a).

Similarly, we prove the second estimate (4.31b) in two steps. First for \(\gamma \ge 2\) we may derive it due to Hölder’s inequality, trace theorem, and the inverse estimate (4.14) that

Next, we proceed to show the second estimates for \(\gamma \in (1, 2)\).

where we have used the algebraic inequality for \(\gamma \in (1,2)\) that . On the other hand, if \(1<\gamma < \frac{4}{3}\) we complete the proof by the inverse estimates (4.14) and find

which finishes the estimate. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarzacher, S., She, B. On numerical approximations to fluid–structure interactions involving compressible fluids. Numer. Math. 151, 219–278 (2022). https://doi.org/10.1007/s00211-022-01275-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01275-2

Mathematics Subject Classification

Navigation