Skip to main content
Log in

A finite volume scheme for the Euler system inspired by the two velocities approach

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose a new finite volume scheme for the Euler system of gas dynamics motivated by the model proposed by H. Brenner. Numerical viscosity imposed through upwinding acts on the velocity field rather than on the convected quantities. The resulting numerical method enjoys the crucial properties of the Euler system, in particular positivity of the approximate density and pressure and the minimal entropy principle. In addition, the approximate solutions generate a dissipative measure-valued solutions of the limit system. In particular, the numerical solutions converge to the smooth solution of the system as long as the latter exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M.: A version of the fundamental theorem for Young measures. In: Lecture Notes in Physics, vol. 344, pp. 207–215. Springer, New York (1989)

  2. Bardow, A., Öttinger, H.C.: Consequences of the Brenner modification to the Navier–Stokes equations for dynamic light scattering. Phys. A 373, 88–96 (2007)

    Article  Google Scholar 

  3. Brenner, H.: Kinematics of volume transport. Phys. A 349, 11–59 (2005)

    Article  Google Scholar 

  4. Brenner, H.: Navier–Stokes revisited. Phys. A 349(1–2), 60–132 (2005)

    Article  MathSciNet  Google Scholar 

  5. Brenner, H.: Fluid mechanics revisited. Phys. A 349, 190–224 (2006)

    Article  Google Scholar 

  6. Březina, J., Feireisl, E.: Measure-valued solutions to the complete Euler system. J. Math. Soc. Jpn. 70(4), 1227–1245 (2018)

    Article  MathSciNet  Google Scholar 

  7. Březina, J., Feireisl, E.: Measure-valued solutions to the complete Euler system revisited. Z. Angew. Math. Phys. 69, 57 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chainais-Hillairet, C., Droniou, J.: Finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions. IMA J. Numer. Anal. 31(1), 61–85 (2011)

    Article  MathSciNet  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (2002)

  10. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Dissipative measure-valued solutions to the compressible Navier–Stokes system. Calc. Var. Partial Differ. 55(6), 55–141 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Feireisl, E., Karper, T., Novotný, A.: A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 36(4), 1477–1535 (2016)

    Article  MathSciNet  Google Scholar 

  13. Feireisl, E., Klingenberg, C., Kreml, O., Markfelder, S.: On oscillatory solutions to the complete Euler system (2017). arxiv preprint No. 1710.10918

  14. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions. arXiv preprint No. 1803.08401, to appear in Found. Comput. Math. (2019)

  15. Fjordholm, U.K., Käppeli, R., Mishra, S., Tadmor, E.: Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math. 17, 1–65 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012)

    Article  MathSciNet  Google Scholar 

  17. Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numer. 25, 567–679 (2016)

    Article  MathSciNet  Google Scholar 

  18. Greenshields, C.J., Reese, J.M.: The structure of shock waves as a test of Brenner’s modifications to the Navier–Stokes equations. J. Fluid Mech. 580, 407–429 (2007)

    Article  MathSciNet  Google Scholar 

  19. Guermond, J.L., Popov, B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74(2), 284–305 (2014)

    Article  MathSciNet  Google Scholar 

  20. Guo, Z., Xu, K.: Numerical validation of Brenner’s hydrodynamic model by force driven poiseuille flow. Adv. Appl. Math. Mech. 1(3), 391–401 (2009)

    MathSciNet  Google Scholar 

  21. Öttinger, H.C., Struchtrup, H., Liu, M.: Inconsistency of a dissipative contribution to the mass flux in hydrodynamics. Phys. Rev. E 80(056303), 1–8 (2009)

    Google Scholar 

  22. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997)

    Book  Google Scholar 

  23. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8(2), 97–111 (1992)

    Article  MathSciNet  Google Scholar 

  24. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems. Acta Numer. 12, 451–512 (2003)

    Article  MathSciNet  Google Scholar 

  25. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. Math. Comput. 49(179), 91–103 (1987)

    Article  MathSciNet  Google Scholar 

  26. Tadmor, E.: Minimum entropy principle in the gas dynamic equations. Appl. Number. Math. 2, 211–219 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Lukáčová-Medvid’ová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of EF and HM leading to these results has received funding from the Czech Sciences Foundation (GAČR), Grant Agreement 18-05974S. The Institute of Mathematics of the Czech Academy of Sciences is supported by RVO:67985840. The research of ML was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in the Transregional Collaborative Research Centers SFB/TRR 146 (Project number 233630050) and SFB/TRR 165 Waves to Weather (Project A2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feireisl, E., Lukáčová-Medvid’ová, M. & Mizerová, H. A finite volume scheme for the Euler system inspired by the two velocities approach. Numer. Math. 144, 89–132 (2020). https://doi.org/10.1007/s00211-019-01078-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01078-y

Mathematics Subject Classification

Navigation