Skip to main content
Log in

Local-in-time existence of strong solutions to a class of the compressible non-Newtonian Navier–Stokes equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The aim of this article is to show a local-in-time existence of a strong solution to the generalized compressible Navier-Stokes equations for arbitrarily large initial data. The goal is reached by \(L^p\)-theory for linearized equations which are obtained with help of the Weis multiplier theorem and can be seen as a generalization of the work of Enomoto and Shibata (Funkcial Ekvac 56(3):441–505, 2013) (devoted to compressible fluids) to compressible non-Newtonian fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here BUC denotes the space of bounded and uniformly continuous functions. Note that \(W^{1,q}(\Omega )\hookrightarrow BUC(\Omega )\) whenever \(q>d\).

  2. Here \({\mathcal {R}}_{{\mathcal {L}}(L^q(\Omega ))}\) is an abbreviation of \({\mathcal {R}}_{{\mathcal {L}}(L^q(\Omega ), L^q(\Omega ))}\)

References

  1. Abbatiello, A., Feireisl, E., Novotný, A.: Generalized solutions to models of compressible viscous fluids. Discrete Contin. Dyn. Syst. 41(1), 1–28 (2021)

    Article  MathSciNet  Google Scholar 

  2. Amann, H.: Linear and quasilinear parabolic problems. In: Function Spaces, Monographs in Mathematics, Vol. II, vol. 106. Birkhäuser/Springer, Cham (2019)

  3. Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Republicii Socialiste România, Bucharest. Noordhoff International Publishing, Leiden (1976) (Translated from the Romanian)

  4. Bellout, H., Bloom, F.: Incompressible bipolar and non-Newtonian viscous fluid flow. Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Cham (2014)

  5. Bellout, H., Bloom, F., Nečas, J.: Solutions for incompressible non-Newtonian fluids. C. R. Acad. Sci. Paris Sér. I Math. 317(8), 795–800 (1993)

  6. Bellout, H., Bloom, F., Nečas, J.: Young measure-valued solutions for non-Newtonian incompressible fluids. Commun. Partial Differ. Equ. 19(11–12), 1763–1803 (1994)

    Article  MathSciNet  Google Scholar 

  7. Bothe, D., Prüss, J.: \(L_P\)-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39(2), 379–421 (2007)

    Article  MathSciNet  Google Scholar 

  8. Burkholder, D.L.: Martingales and Fourier analysis in Banach spaces. In: Probability and Analysis (Varenna, 1985), Lecture Notes in Math., vol. 1206, pp. 61–108. Springer, Berlin (1986)

  9. Charve, F., Danchin, R.: A global existence result for the compressible Navier-Stokes equations in the critical \(L^p\) framework. Arch. Ration. Mech. Anal. 198(1), 233–271 (2010)

    Article  MathSciNet  Google Scholar 

  10. Clément, P., Prüss, J.: An operator-valued transference principle and maximal regularity on vector-valued \(L_p\)-spaces. Lecture Notes in Pure and Appl. Math. vol. 215. Dekker, New York (2001)

  11. Da Prato, G., Grisvard, P.: Sommes d’opérateurs linéaires et équations différentielles opérationnelles. J. Math. Pures Appl. (9) 54(3), 305–387 (1975)

  12. Denk, R., Hieber, M., Prüss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003)

  13. Enomoto, Y., Shibata, Y.: On the R-sectoriality and the initial boundary value problem for the viscous compressible fluid flow. Funkcial. Ekvac. 56(3), 441–505 (2013)

    Article  MathSciNet  Google Scholar 

  14. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)

    Article  MathSciNet  Google Scholar 

  15. Graffi, D.: Il teorema di unicità nella dinamica dei fluidi compressibili. J. Ration. Mech. Anal. 2, 99–106 (1953)

    MATH  Google Scholar 

  16. Itaya, N.: On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid. Ködai Math. Sem. Rep. 23, 60–120 (1971)

    MathSciNet  MATH  Google Scholar 

  17. Itaya, N.: On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid. Kodai Math. Sem. Rep. 23, 60–120 (1971)

    Article  MathSciNet  Google Scholar 

  18. Itaya, N.: On the initial value problem of the motion of compressible viscous fluid, especially on the problem of uniqueness. J. Math. Kyoto Univ. 16(2), 413–427 (1976)

    MathSciNet  MATH  Google Scholar 

  19. Kunstmann, P.C., Weis, L.: Maximal \(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^{\infty }\)-functional calculus. In: Functional Analytic Methods for Evolution Equations. Lecture Notes in Math, vol. 1855, pp. 65–311. Springer, Berlin (2004)

  20. Ladyženskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)

  21. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Revised English edition. Translated from the Russian by Richard A. Silverman. Gordon and Breach Science Publishers, New York (1963)

  22. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, vol. 10, Compressible models, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1998)

  23. Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, vol. 13. Chapman & Hall, London (1996)

  24. Málek, J., Nečas, J., Růžička, M.: On the non-Newtonian incompressible fluids. Math. Models Methods Appl. Sci. 3(1), 35–63 (1993)

  25. Mamontov, A.E.: On the global solvability of the multidimensional Navier–Stokes equations of a nonlinearly viscous fluid. I. Sibirsk. Mat. Zh. 40(2), 408–420, iii (1999)

  26. Mamontov, A.E.: On the global solvability of the multidimensional Navier–Stokes equations of a nonlinearly viscous fluid. II. Sibirsk. Mat. Zh. 40(3), 635–649, iii (1999)

  27. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  28. Matsumura, A., Nishida, T.: Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89(4), 445–464 (1983)

    Article  MathSciNet  Google Scholar 

  29. Matušů-Nečasová, Š., Novotný, A.: Measure-valued solution for non-Newtonian compressible isothermal monopolar fluid. Acta Appl. Math. 37(1–2), 109–128 (1994) (Mathematical problems for Navier-Stokes equations (Centro, 1993))

  30. Nash, J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)

    Article  MathSciNet  Google Scholar 

  31. Prüss, J.: Maximal regularity for evolution equations in \(L_p\)-spaces. Conf. Semin. Mat. Univ. Bari 285, 1–39 (2002)

    Google Scholar 

  32. Rubio de Francia, J.L.: Martingale and integral transforms of Banach space valued functions. In: Probability and Banach Spaces (Zaragoza, 1985), Lecture Notes in Math., vol. 1221, pp. 195–222. Springer, Berlin (1986)

  33. Serrin, J.: On the uniqueness of compressible fluid motions. Arch. Ration. Mech. Anal. 3(271–288), 1959 (1959)

    MathSciNet  MATH  Google Scholar 

  34. Shibata, Y., Shimizu, S.: On the maximal \(L_p\)-\(L_q\) regularity of the Stokes problem with first order boundary condition; model problems. J. Math. Soc. Japan 64(2), 561–626 (2012)

    Article  MathSciNet  Google Scholar 

  35. Solonnikov, V.A.: The solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56, 128–142, 197 (1976) (Investigations on linear operators and theory of functions, VI)

  36. Tanabe, H.: Functional analytic methods for partial differential equations. Monographs and Textbooks in Pure and Applied Mathematics, vol. 204. Marcel Dekker Inc, New York (1997)

  37. Valli, A.: Periodic and stationary solutions for compressible Navier–Stokes equations via a stability method. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10(4), 607–647 (1983)

  38. Valli, A., Zajączkowski, W.M.: Navier–Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103(2), 259–296 (1986)

    Article  MathSciNet  Google Scholar 

  39. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319(4), 735–758 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Š.N. and V.M. leading to these results has received funding from the Czech Sciences Foundation (GAČR), GA19-04243S and in the framework of RVO: 67985840. The research of M.K. was supported by RVO: 67985840. Moreover, M.K. was supported by the Czech Sciences Foundation (GAČR), GA19-04243S during his research on the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Nečasová.

Ethics declarations

Conflict of interest

Šárka Nečasová as the corresponding author declares on behalf of all authors, that there is no conflict of interest.

Data availability statement

There are no associated data corresponding to the manuscript.

Additional information

Communicated by GIGA.

Appendix

Appendix

Here we present several theorems from other sources for readers convenience.

Theorem 4.1

(Theorem 3.3 in [13]) Let \(1<q<\infty \) and let \(\Lambda \subset {\mathbb {C}}\). Let \(m(\lambda ,\xi )\) be a function defined on \(\Lambda \times (\mathbb R^d{\setminus }\{0\})\) such that for any multi-index \(\alpha \in {\mathbb {N}}^d_0\) there exists a constant \(C_\alpha \) depending on \(\alpha \) and \(\Lambda \) such that

$$\begin{aligned} |\partial ^\alpha _\xi m(\lambda ,\xi )|\le C_\alpha |\xi |^{-\alpha } \end{aligned}$$

for any \((\lambda ,\xi )\in \Lambda \times ({\mathbb {R}}^d{\setminus } \{0\})\). Let \(K_\lambda \) be an operator defined by \(K_\lambda f = {\mathcal {F}}^{-1}_\xi [m(\lambda ,\xi ){{\hat{f}}}(\xi )]\). Then, the set \(\{K_\lambda |\lambda \in \Lambda \}\) is \({\mathcal {R}}\)-bounded on \({\mathcal {L}}(L^q({\mathbb {R}}^d))\) and

$$\begin{aligned} {\mathcal {R}}_{{\mathcal {L}}(L^q({\mathbb {R}}^d))} (\{K_\lambda | \lambda \in \Lambda \}) \le C_{q,d} \max _{|\alpha |\le d+2} C_\alpha . \end{aligned}$$

Lemma 4.1

(Lemma 3.1 in [13]) Let \(0<\beta <\pi /2\) and \(\nu _0>0\). For any \(\lambda \in \Sigma _{\beta ,\nu }\) we have

$$\begin{aligned} |\lambda + |\xi |^2| \ge \sin (\beta /2) (|\lambda | + |\xi |^2). \end{aligned}$$

Proposition 4.1

(Proposition 2.13 in [13]) Let \(D\subset {\mathbb {R}}^d\) be a domain and let \(\Lambda \) be a domain in \({\mathbb {C}}\). Let \(m(\lambda )\) be a bounded function on \(\Lambda \) and let \(M_m(\lambda ):L^q(D)\mapsto L^q(D)\) be defined as \(M_m(\lambda ) f = m(\lambda )f\). Then

$$\begin{aligned} {\mathcal {R}}_{{\mathcal {L}}(L^q(D))} (\{M_m(\lambda )|\lambda \in \Lambda \}) \le C_{d,q,D} \Vert m\Vert _{L^\infty (\Lambda )}. \end{aligned}$$

Proposition 4.2

(Proposition 2.16 in [13] or Proposition 3.4 in [12])

  1. 1.

    Let X and Y be Banach spaces and let \({\mathcal {T}}\) and \({\mathcal {S}}\) be \({\mathcal {R}}\)-bounded families on \({\mathcal {L}}(X,Y)\). Then \({\mathcal {T}}+{\mathcal {S}} = \{T+S| T\in {\mathcal {T}}, S\in {\mathcal {S}}\}\) is also \({\mathcal {R}}\)-bounded on \({\mathcal {L}}(X,Y)\) and

    $$\begin{aligned} {\mathcal {R}}_{{\mathcal {L}}(X,Y)} ({\mathcal {T}} + {\mathcal {S}})\le \mathcal R_{{\mathcal {L}}(X,Y)} ({\mathcal {T}}) + R_{{\mathcal {L}}(X,Y)} ({\mathcal {S}}). \end{aligned}$$
  2. 2.

    Let XY and Z be Banach spaces and let \({\mathcal {T}}\) and \({\mathcal {S}}\) be \({\mathcal {R}}\)-bounded families on \({\mathcal {L}}(X,Y)\) and \({\mathcal {L}}(Y,Z)\) respectively. Then \({\mathcal {S}}{\mathcal {T}} = \{ST| T\in {\mathcal {T}}, S\in {\mathcal {S}}\}\) is \({\mathcal {R}}\)-bounded on \({\mathcal {L}}(X,Y)\) and

    $$\begin{aligned} {\mathcal {R}}_{{\mathcal {L}}(X,Z)}({\mathcal {S}}{\mathcal {T}}) \le \mathcal R_{{\mathcal {L}}(X,Y)} ({\mathcal {T}}) {\mathcal {R}}_{\mathcal L(Y,Z)}({\mathcal {S}}). \end{aligned}$$

Remark 4.1

Our plan is to extend the result to the case of a bounded domain including some more general boundary conditions as inflow/outflow or nonhomogeneous Dirichlet boundary conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalousek, M., Mácha, V. & Nečasová, Š. Local-in-time existence of strong solutions to a class of the compressible non-Newtonian Navier–Stokes equations. Math. Ann. 384, 1057–1089 (2022). https://doi.org/10.1007/s00208-021-02301-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02301-8

Mathematics Subject Classification

Navigation