Skip to main content
Log in

Joining of cemented carbides WC–Co and tool steel X153CrMoV12 with capacitor discharge welding process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Welding a combination of hard-to-weld materials such as cemented carbides WC–Co and tool steel X153CrMoV12 is a big challenge due to the diametrically different properties of the materials being joined. Such joint makes it possible to combine the high hardness of sintered carbide with the high fracture toughness of steel. Then, the unique property profile of joint allows to use the sintered carbides as a material for demanding applications that are subject to high levels of stress and wear. The connection of sintered carbides (WC–Co) with steel can be achieved in various ways. However, each of these techniques can lead to manufacturing defects. The solution can be the method of multi-capacitor discharge welding, which allows high temperatures to be reached for very short times. Standard single-capacitor systems do not allow control of the welding process. Therefore, in this study, a new multi-capacitor method was used for welding. The method allows influencing the process due to the variability of adjustable parameters, mainly targeted influencing of the welding current. After finding the optimized parameters, a set of test samples was welded from cemented carbides WC–Co and tool steel X153CrMoV12. The joined test specimens achieved a demonstrable fusion bond during the welding process. The connection occurred around the entire perimeter of the contact surface. During joining, a mixed layer (consisting of cemented carbide and tool steel components) and a melting zone (depleted of chromium) were created at the interface of the materials. The average quasi-static strength of the connection was 12.5 kN. The study provides insight into the use of the multi-capacitor discharge welding method to join a combination of difficult-to-weld materials suitable for demanding industrial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References 

  1. Ma B, Wang X, Chen Ch, Zhou D, Xu P, Zhao P (2019) Dissimilar welding and joining of cemented carbides. Metals 9(11):1161. https://doi.org/10.3390/met9111161

    Article  Google Scholar 

  2. Maizza G, Pero R, De Marco F, Ohmura T (2020) Correlation between the indentation properties and microstructure of dissimilar capacitor discharge welded WC-Co/high-speed steel joints. Materials 13(11):2657. https://doi.org/10.3390/ma13112657

    Article  Google Scholar 

  3. Yin G, Pe Xu, Gong H, Cui H, Lu F (2018) Effect of interlayer thickness on the microstructure and strength of WC-Co/Invar/316L steel joints prepared by fibre laser welding. J Mater Process Technol 255:319–332. https://doi.org/10.1016/j.jmatprotec.2017.12.030

    Article  Google Scholar 

  4. Yu X-Y, Zhou D-R, Yao D-J, Lu F-G, Xu P-G (2016) Fiber laser welding of WC-Co to carbon steel using Fe-Ni Invar as interlayer. Int J Refract Met Hard Mater 56:76–86. https://doi.org/10.1016/j.ijrmhm.2015.12.006

    Article  Google Scholar 

  5. Xu P, Zhou DR, Li L (2017) Fiber laser welding of WC-Co and carbon steel dissimilar materials. Weld J 96(1):1–10

    Google Scholar 

  6. Chen G, Zhang B, Wu Z, Shu X, Feng J (2017) Microstructure transformation and crack sensitivity of WC-Co/steel joint welded by electron beam. Vacuum 139:26–32. https://doi.org/10.1016/j.vacuum.2016.12.038

    Article  Google Scholar 

  7. Zhao X, Yang DX, Takazawa K, Kamota S, Miyakoshi Y, Yamamori H, Tagashira K (2004) Formation of complex carbide in TIG welded joints of WC-Co hard metal and carbon steel. J Japan Inst Metals 68(2):98–101

    Article  Google Scholar 

  8. Xu PQ, Ren JW, Zhang PL, Gong HY, Yang SL (2013) Analysis of formation and interfacial WC dissolution behavior of WC-Co/invar laser-TIG welded joints. J Mater Eng Perform 22(2):613–623. https://doi.org/10.1007/s11665-012-0279-z

    Article  Google Scholar 

  9. Lemus-Ruiz J, Ávila-Castillo JJ, García-Estrada R (2007) WC / stainless steel joints produced by direct diffusion bonding using a Ni-foil interlayer. Mater Sci Forum. 560:53–57. https://doi.org/10.4028/www.scientific.net/MSF.560.53

    Article  Google Scholar 

  10. Avettand-Fènoël MN, Nagaoka T, Fujii H, Taillard R (2018) Characterization of WC/12Co cermet–steel dissimilar friction stir welds. J Manuf Processes. 31:139–155. https://doi.org/10.1016/j.jmapro.2017.11.012

    Article  Google Scholar 

  11. Tiwari A, Pankaj P, Biswas P, Kore SD, Rao AG (2019) Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints. Int J Adv Manuf Technol 103(5–8):1989–2005. https://doi.org/10.1007/s00170-019-03618-0

    Article  Google Scholar 

  12. Ad A (2020) Sarhan, Dissimilar vacuum brazing of WC-Co and cold work steel utilizing a new near-eutectic silver-copper filler alloy. Proc Inst Mech Eng, Part B: J Eng Manuf 234(6–7):1019–1031. https://doi.org/10.1177/0954405419893854

    Article  Google Scholar 

  13. Ju J, Xue F, Zhou J, Bai J, Sun L (2015) Interface and bond strength of brazing cemented carbide K20 to alloy steel AISI 4140 by high-frequency induction. Mater Manuf Proc 31(8):1052–1060. https://doi.org/10.1080/10426914.2015.1048357

    Article  Google Scholar 

  14. Maizza G, Cagliero R, Iacobone A, Montanari R, Varone A, Mezzi A, Kaciulis S (2016) Study of steel-WC interface produced by solid-state capacitor discharge sinter-welding. Surf Interface Anal 48(7):538–542. https://doi.org/10.1002/sia.5945

    Article  Google Scholar 

  15. Takaki K, Mikami Y, Itagaki M, Mukaigawa S, Fujiwara T, Nakamura S (2006) Influence of metal foil width on bonding strength in capacitor discharge ceramics joining. IEEE Trans Plasma Sci 34(5):1709–1714. https://doi.org/10.1109/TPS.2006.883409

    Article  Google Scholar 

  16. Wilson RD, Woodyard JR, Devletian JH (1993) Capacitor discharge welding: analysis through ultrahigh-speed photography. Weld Res Suppl 101–106

  17. Ketzel MM, Hertel M, Zschetzsche J, Füssel U (2019) Heat development of the contact area during capacitor discharge welding. Welding in the World 63(5):1195–1203. https://doi.org/10.1007/s40194-019-00744-x

    Article  Google Scholar 

  18. Scotchmer N (2016) The current rise in the use of capacitor discharge welding. Weld J Am Weld Soc 1–5

  19. Cao X, Zhou Z, Luo J, Zou Ch, Zou Ch (2019) Capacitor discharge welding of nuts to steel sheets. J Mater Process Technol. 264:486–493. https://doi.org/10.1016/j.jmatprotec.2018.09.038

    Article  Google Scholar 

  20. Luo J, Zhou Z, Cao X, Zou Ch, Zou Ch (2019) Microstructure and failure analysis of resistance projection welding of nuts to AHSS with capacitor discharge welding. ISIJ Int 59(2):305–311. https://doi.org/10.2355/isijinternational.ISIJINT-2018-425

    Article  Google Scholar 

  21. Shim J-Y, Kang B-Y, Kim I-S (2017) Characteristics of Al/steel magnetic pulse tubular joint according to discharging time. J Mech Sci Technol 31(8):3793–3801. https://doi.org/10.1007/s12206-017-0723-y

    Article  Google Scholar 

  22. Stocks N, Rusch HJ, Ketzel MM, Zschetzsche J, Füssel U (2018) Prozessführung durch Mehrpulsverfahren beim Fügen von höchstfesten, beschichteten Werkstoffen. In: DVS Berichte, Band: 344, DVS CONGRESS 2018. DVS Media, Düsseldorf

  23. Prakash L (1980) Weiterentwicklung von Wolframcarbid Hartmetallen unter Verwendung von Eisen-Basis-Bindelegierungen (Dissertation). KIT-Bibliothek, Karlsruhe

    Google Scholar 

  24. Greitmann MJ (1992) Untersuchungen zum Widerstandsschweißen von Hartmetall auf Stahl. Staatliche Materialprüfungsanstalt (MPA) Universität Stuttgart, Stuttgart

    Google Scholar 

  25. Dilthey U (2006) Schweißtechnische Fertigungsverfahren 1, Schweiß- und Schneidtechnologien. Springer Verlag, 3. Auflage, Berlin

  26. Eckstein H (1972) Wärmebehandlung von Stahl / Metallkundliche Grundlagen. Materialwissenschaft und Werkstofftechnik 3(5):279–279

    Google Scholar 

  27. Koch W, Kolbe-Rohde H (1963) Ein Beitrag zur Kinetik der Carbidbildung in Chromstählen. Zeitschrift für anorganische und allgemeine Chemie 319(5–6):312–319. https://doi.org/10.1002/zaac.19633190512

    Article  Google Scholar 

  28. DIN EN 10020:2000–07 (2000) Begriffsbestimmung für die Einteilung der Stähle; DIN Deutsches Institut für Normung, Deutsche Fassung. Beuth Verlag, Berlin 

  29. Lee BJ (1992) On the stability of Cr carbides. Calphad 16(2):121–149. https://doi.org/10.1016/0364-5916(92)90002-F

    Article  Google Scholar 

  30. Lee BJ (1993) Revision of thermodynamic descriptions of the Fe-Cr & Fe-Ni liquid phases. Calphad 17(3):251–268. https://doi.org/10.1016/0364-5916(93)90004-U

    Article  Google Scholar 

  31. Tofaute W, Küttner C, Büttinghaus A (1936) Das System Eisen- Chrom-Chromkarbid Cr7C3-Zementit. Archiv für das Eisenhüttenwesen 9(12):607–617. https://doi.org/10.1002/srin.193600789

    Article  Google Scholar 

  32. Folkhard E (1984) Metallurgie der Schweissung nichtrostender Stähle. Springer Verlag, Wien, New York

    Book  Google Scholar 

  33. Li S, Xi X, Luo Y, Mao M, Shi X, Guo J, Guo H (2018) Carbide Precipitation during tempering and its effect on the wear loss of a high-carbon 8 mass. Materials (Basel, Switzerland) 11(12):2491. https://doi.org/10.3390/ma11122491

    Article  Google Scholar 

  34. Rosemann P, Kauss N, Müller C, Halle T (2017) Einfluss der Abkühlgeschwindigkeitauf die Neigung zur Chromverarmung martensitischer nichtrostender Stähle. In: 16. Sommerkurs Werkstoffe und Fügen. Magdeburg, pp 71–78. https://d-nb.info/1141230585/34#page=72

  35. Rosemann P, Müller C, Kauss N, Halle T (2014) Einfluss der Wärmebehandlung auf Mikrostruktur und Korrosionsverhalten kohlenstoffhaltiger nichtrostender Stähle. In: 17. Werkstofftechnischen Kolloquium (Chemnitz). Technische Universität Chemnitz

  36. Hirano K, Iijima Y, Araki K, Homma H (1977) Interdiffusion in iron-cobalt alloys. Transactions of the Iron and Steel Institute of Japan 17(4):194–203. https://doi.org/10.2355/isijinternational1966.17.194

  37. Seith W (1955) Diffusion in Metallen. Reine und angewandte Metallkunde in Einzeldarstellungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53297-9

  38. Exner HE (1979) Physical and chemical nature of cemented carbides. Int Met Rev 24(1):149–173. https://doi.org/10.1179/imtr.1979.24.1.149

    Article  Google Scholar 

  39. Fernandes CM, Senos AMR (2011) Cemented carbide phase diagrams: a review. Int J Refract Hard Met 29(4):405–418. https://doi.org/10.1016/j.ijrmhm.2011.02.004

    Article  Google Scholar 

  40. Seidel W (2014) Werkstofftechnik: Werkstoffe - Eigenschaften - Prüfung - Anwendung. Carl Hanser Verlag, 10. Auflage, München

  41. Macherauch E, Zoch HW (2019) Praktikum in Werkstoffkunde: 100 ausführliche Versuche aus wichtigen Gebieten der Werkstofftechnik. 13., überarbeitete und erweiterte Auflage. Springer Vieweg, Wiesbaden

  42. Bergmann W (2008) Werkstofftechnik 1 : Teil 1: Grundlagen [struktureller Aufbau von Werkstoffen, metallische Werkstoffe, Polymerwerkstoffe, nichtmetallisch-anorganische Werkstoffe]. 6., aktualisierte Aufl. Hanser, München

  43. Hartl M, Wever H (1973) Chemische Diffusion in Eisen-Chrom- und Eisen- Chrom-Kohlenstoff-Legierungen im Bereich des Austenits. Archiv für das Eisenhüttenwesen 44(5):381–383. https://doi.org/10.1002/srin.197302417

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110).

Funding

This work was supported by MEYS CR (LM2018110). Author M.V. has received research support from CzechNanoLab Research Infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by NS and MK. Analysis was performed by MK, RC, MV, and LK. The first draft of the manuscript was written by NS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marie Kolaříková.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• At multi-CD welding of cemented carbides and tool steel, a molten phase is formed.

• The zone with chromium depletion and mixed layer are formed in the joining zone.

• The molten phase is pushed out of the joint in the form of the bead with dendritic structure Cr is enriched.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stocks, N., Kolaříková, M., Chotěborský, R. et al. Joining of cemented carbides WC–Co and tool steel X153CrMoV12 with capacitor discharge welding process. Int J Adv Manuf Technol 129, 3155–3169 (2023). https://doi.org/10.1007/s00170-023-12494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12494-8

Keywords

Navigation