Skip to main content
Log in

Objective time derivatives revised

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We propose a constructive introduction of the objective time derivatives based on the formulation of solid mechanics as a simple Lagrangian system. This enables to distinguish between deformation rates, which are in principle Lie derivatives, and stress rates, which are actually covariant derivatives along a curve representing a deformation process. Besides, the role of Daleckii–Krein formula in understanding the theory with generalized strains is highlighted, and a special attention will be paid to the logarithmic time derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Addison-Wesley Publishing Company, Redwood City (1987)

    Google Scholar 

  2. Abraham, R., Marsden, J.E., Ratiu, T.S.: Manifolds, Tensor Analysis, and Applications Applied Mathematical Sciences. Springer, Berlin (1988)

    Book  Google Scholar 

  3. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. Springer, Berlin (1997)

    Google Scholar 

  4. Barbour, J.B.: On general covariance and best matching. In: Callender, C., Huggett, N. (eds.) Physics Meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity, pp. 199–212. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  5. Birkhoff, G., Bennett, M.K.: Felix Klein and his “Erlanger Programm”. University of Minnesota Press, Minneapolis. Retrieved from the University of Minnesota Digital Conservancy. http://hdl.handle.net/11299/185660 (1988)

  6. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  7. Bruhns, O., Xiao, H., Meyers, A.: New results for the spin of the Eulerian triad and the logarithmic spin and rate. Acta Mech. 155, 95–109 (2002)

    Article  Google Scholar 

  8. Carlson, D.E., Hoger, A.: The derivative of a tensor-valued function of a tensor. Q. Appl. Math. 44, 409–423 (1986)

    Article  MathSciNet  Google Scholar 

  9. Dieci, L., Eirola, T.: On smooth decompositions of matrices. SIAM J. Matrix Anal. Appl. 20, 800–819 (1999)

    Article  MathSciNet  Google Scholar 

  10. Epstein, M., Segev, R.: Differentiable manifolds and the principle of virtual work in continuum mechanics. J. Math. Phys. 21, 1243–1245 (1980)

    Article  MathSciNet  Google Scholar 

  11. Fiala, Z.: Geometrical setting of solid mechanics. Ann. Phys. 326, 1983–1997 (2011)

    Article  MathSciNet  Google Scholar 

  12. Fiala, Z.: Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods. Acta Mech. 226, 17–35 (2015)

    Article  MathSciNet  Google Scholar 

  13. Fiala, Z.: Geometry of finite deformations and time-incremental analysis. Int. J. Nonlinear Mech. 81, 230–244 (2016)

    Article  Google Scholar 

  14. Fiala, Z.: Evolution equation of Lie-type for finite deformations, and its time-discrete integration. In: Murphy, C. (ed.) Emerging Concepts in Evolution Equations, pp. 1–30. Nova Science, Hauppauge, NY (2017)

    Google Scholar 

  15. Frankel, T.: The Geometry of Physics. An Introduction. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  16. Graban, K., Schweickert, E., Martin, R.J., Neff, P.: A commented translation of Hans Richter’s early work “The isotropic law of elasticity”. Math. Mech. Solids 24, 2649–2660 (2019)

    Article  MathSciNet  Google Scholar 

  17. Hill, R.: On the constitutive inequalities for simple materials—I. J. Mech. Phys. Solids 16, 229–242 (1968)

    Article  Google Scholar 

  18. Holm, D.D.: Geometric Mechanics. Part I: Dynamics and Symmetry. Part II: Rotating, Translating and Rolling. Imperial College Press, London (2008)

    Book  Google Scholar 

  19. Horn, R.A.: The Hadamard product. In: Charles, R.J. (ed.) Matrix Theory and Applications. Proceeding of Symposia in Applied Mathematics, vol. 40, pp. 87–169. AMS, Providence, RI (1990)

    Chapter  Google Scholar 

  20. Horn, R.A., Johnson, ChR: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  21. Korobeynikov, S.N.: Basis-free expressions for families of objective strain tensors, their rates, and conjugate stress tensors. Acta Mech. 229, 1061–1098 (2018)

    Article  MathSciNet  Google Scholar 

  22. Liu, I-S., Sampaio, R.: On objectivity and the principle of material frame-indifference. Mecánica Computacional XXXI. Number 9. Constitutive Modeling of Materials (B), 1553–1569 (2012)

  23. Liu, I-S., Sampaio, R.: Remarks on material frame-indifference controversy. Acta Mech. 225, 331–348 (2014)

    Article  MathSciNet  Google Scholar 

  24. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1993)

    MATH  Google Scholar 

  25. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1999)

    Book  Google Scholar 

  26. Meyers, A.: On the consistency of some Eulerian strain rates. ZAMM 79, 171–177 (1999)

    Article  MathSciNet  Google Scholar 

  27. Misner, Ch.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman and Company, San Francisco (1973)

  28. Neff, P., Graban, K., Schweickert, E., Martin, R.J.: The axiomatic introduction of arbitrary strain tensors by Hans Richter—a commented translation of “Strain tensor, strain deviator and stress tensor for finite deformations”. Math. Mech. Solids

  29. Noll, W., Seguin, B.: Basic concepts of thermomechanics. J. Elast. 101, 121–151 (2010)

    Article  MathSciNet  Google Scholar 

  30. Norris, A.N.: Eulerian conjugate stress and strain. J. Mech. Mater. Struct. 3, 243–260 (2008)

    Article  Google Scholar 

  31. Prager, W.: An elementary discussion of definitions of stress rate. Q. Appl. Math. 18, 403–407 (1961)

    Article  MathSciNet  Google Scholar 

  32. Trkovská, D.: Felix Klein and his Erlanger Programm. In: Šafránková, J., Pavlů, J. (eds.) WDS’07 Proceedings of Contributed Papers, Part I, pp. 251–256. Matfyzpress, Prague. http://bergeron.math.uqam.ca/wp-content/uploads/2016/08/Histoire_Klein.pdf (2007)

  33. Xiao, H.: Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill’s strain. Int. J. Solids Struct. 32, 3327–3340 (1995)

    Article  MathSciNet  Google Scholar 

  34. Xiao, H., Bruhns, O., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)

    Article  MathSciNet  Google Scholar 

  35. Xiao, H., Bruhns, O., Meyers, A.: Strain rates and material spins. J. Elast. 52, 1–41 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The support through the Institutional Project RVO: 68378297 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Fiala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiala, Z. Objective time derivatives revised. Z. Angew. Math. Phys. 71, 4 (2020). https://doi.org/10.1007/s00033-019-1227-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1227-7

Keywords

Mathematics Subject Classification

Navigation