Skip to main content
Log in

Measure-Valued Solutions and Weak–Strong Uniqueness for the Incompressible Inviscid Fluid–Rigid Body Interaction

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider a coupled system of partial and ordinary differential equations describing the interaction between an incompressible inviscid fluid and a rigid body moving freely inside the fluid. We prove the existence of measure-valued solutions which is generated by the vanishing viscosity limit of incompressible fluid–rigid body interaction system under some physically constitutive relations. Moreover, we show that the measure-valued solution coincides with strong solution on the interval of its existence. This relies on the weak–strong uniqueness analysis. This is the first result of an existence of measure-valued solution and weak–strong uniqueness in measure-valued sense in the case of inviscid fluid–structure interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M.: A Version of the Fundamental Theorem for Young Measures. PDEs and Continuum Models of Phase Transitions (Nice, 1988), Lecture Notes in Physics, vol. 344, pp. 207–215. Springer, Berlin (1989)

    Google Scholar 

  2. Bravin, M.: Energy equality and uniqueness of weak solutions of a “Viscous Incompressible Fluid + Rigid Body” system with Navier slip-with-friction conditions in a 2d bounded domain. J. Math. Fluid Mech. 2(23), 31 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Brenier, Y., De Lellis, C., Székelyhidi, Jr., L.: Weak-strong uniqueness for measure-valued solutions. Commun. Math. Phys. 305(2), 351–361 (2011)

  4. Bocquet, L., Barrat, J.: Flow boundary conditions from nano to micro-scales. Soft Matter 3, 685–693 (2007)

    Article  ADS  Google Scholar 

  5. Brenner, H., Cox, R.G.: The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17, 561–595 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Chemetov, N.V., Nečasová, Š., Muha, B.: Weak-strong uniqueness for fluid-rigid body interaction problem with slip boundary condition. J. Math. Phys. 60(1), 13 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Conca, C., San Martin, J., Tucsnak, M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Part. Differ. Equ. 25, 1019–1042 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Cooley, M., ONeill, M.: On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika 16, 37–49 (1969)

    Google Scholar 

  9. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    MathSciNet  MATH  Google Scholar 

  10. Demoulini, S., Stuart, D.M.A., Tzavaras, A.E.: Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal. 205, 927–961 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Desjardins, B., Esteban, M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146, 59–71 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Delort, J.M.: Existence de nappes de tourbillon en dimension deux (French) [Existence of vortex sheets in dimension two]. J. Am. Math. Soc. 4(3), 553–586 (1991)

    MATH  Google Scholar 

  13. Doboszczak, S.: Relative entropy and a weak-strong uniqueness principle for the compressible Navier–Stokes equations on moving domains. Appl. Math. Lett. 57, 60–68 (2016)

    MathSciNet  MATH  Google Scholar 

  14. DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108(4), 667–689 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Disser, K., Galdi, G.P., Mazzone, G., Zunino, P.: Inertial motions of a rigid body with a cavity filled with a viscous liquid. Arch. Ration. Mech. Anal. 221(1), 487–526 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Feireisl, E.: On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3, 419–441 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Dissipative measure-valued solutions to the compressible Navier–Stokes system. Cal. Var. Part. Differ. Equ. 55(6), 141 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Galdi, G.P., Mácha, V., Nečasová, Š.: On weak solutions to the problem of a rigid body with a cavity filled with a compressible fluid, and their asymptotic behavior. Int. J. Non-Linear Mech. 121, 103431 (2020)

    ADS  Google Scholar 

  19. Galdi, G.P.: On the Motion of a Rigid Body in a Viscous Fluid: A Mathematical Analysis with Applications. Handbook of Mathematical Fluid Dynamics, vol. I. Elsevier Science, Amsterdam (2002)

    MATH  Google Scholar 

  20. Geissert, M., Götze, K., Hieber, M.: \(L^p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. Trans. Am. Math. Soc. 365(3), 1393–1439 (2013)

    MATH  Google Scholar 

  21. Gérard-Varet, D., Hillairet, M.: Regularity issues in the problem of fluid structure interaction. Arch. Ration. Mech. Anal. 195(2), 375–407 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Gérard-Varet, D., Hillairet, M.: Existence of weak solutions up to collision for viscous fluid-solid systems with slip. Commun. Pure Appl. Math. 67(12), 2022–2075 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Gérard-Varet, D., Hillairet, M., Wang, C.: The influence of boundary conditions on the contact problem in a 3D Navier–Stokes flow. J. Math. Pures Appl. 103(1), 1–38 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Glass, O., Sueur, F.: Uniqueness results for systems. Arch. Ration. Mech. Anal. 218(2), 907–944 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Glass, O., Sueur, F.: On the motion of a rigid body in a two-dimensional irregular ideal flow. SIAM J. Math. Anal. 44(5), 3101–3126 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Glass, O., Lacave, C., Sueur, F.: On the motion of a small body immersed in a two-dimensional incompressible perfect fluid. Bull. Soc. Math. France 142(3), 489–536 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Glass, O., Sueur, F.: Low regularity solutions for the two-dimensional “rigid body + incompressible Euler” system. Differ. Integral Equ. 27(7–8), 625–642 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Gunzburger, M.D., Lee, H.C., Seregin, A.: Global existence of weak solutions for viscous incompressible flow around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2, 219–266 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Gwiazda, P., Kreml, O., Świerczewska-Gwiazda, A.: Dissipative measure valued solutions for general conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 37(3), 683–707 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Hillairet, M.: Lack of collision between solid bodies in a 2D incompressible viscous flow. Commun. Part. Differ. Equ. 32(7–9), 1345–1371 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Hillairet, M., Takahashi, T.: Collisions in three dimensional fluid structure interaction problems SIAM. J. Math. Anal. 40(6), 2451–2477 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Hoffmann, K.H., Starovoitov, V.N.: On a motion of a solid body in a viscous fluid. Two dimensional case. Adv. Math. Sci. Appl. 9, 633–648 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Houot, J.G., Jorge, S.M., Tucsnak, M.: Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid. J. Funct. Anal. 259(11), 2856–2885 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Inoue, A., Wakimoto, M.: On existence of solutions of the Navier–Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(2), 303–319 (1977)

    MathSciNet  MATH  Google Scholar 

  35. Kreml, O., Nečasová, Š., Piasecki, T.: Local existence of strong solutions and weak-strong uniqueness for the compressible Navier–Stokes system on moving domains. Proc. R. Soc. Edinb. Sect. A Math. 150(5), 2255–2300 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Kreml, O., Nečasová, Š., Piasecki, T.: Weak-strong uniqueness for the compressible fluid-rigid body interaction. J. Differ. Equ. 268, 4756–4785 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Málek, J., Nečas, J., Rokyta, M., Ružička, M.: Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, London (1996)

    MATH  Google Scholar 

  38. Muha, B., Nečasová, A., Radoševič, A.: A uniqueness result for 3D incompressible fluid-rigid body interaction problem. J. Math. Fluid Mech. 23(1), 39 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Ortega, J.H., Rosier, L., Takahashi, T.: Classical solutions for the equations modelling the motion of a ball in a bidimensional in compressible perfect fluid. M2AN Math. Model. Numer. Anal. 39(1), 79–108 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Ortega, J.H., Rosier, L., Takahashi, T.: On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(1), 139–165 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  41. San Martin, J., Starovoitov, V., Tucsnak, M.: Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161, 93–112 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Serre, D.: Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Jap. J. Appl. Math. 4, 99–110 (1987)

    MathSciNet  MATH  Google Scholar 

  43. Sueur, F.: On the motion of a rigid body in a two-dimensional ideal flow with vortex sheet initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(3), 401–417 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Sueur, F.: A Kato type theorem for the inviscid limit of the Navier–Stokes equations with a moving rigid body. Commun. Math. Phys. 316(3), 783–808 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Takahashi, T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8(12), 1499–1532 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Wang, C.: Strong solutions for the fluid-solid systems in a 2-D domain. Asymptot. Anal. 89(3–4), 263–306 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Wiedemann, E.: Weak-Strong Uniqueness in Fluid Dynamics. Partial Differential Equations in Fluid Mechanics. London Mathematics Society Lecture Note Series, vol. 462, pp. 289–326. Cambridge University Press, Cambridge (2018)

    Google Scholar 

Download references

Acknowledgements

M. C. has been supported partially by the Institute of Mathematics, CAS, and partially by the Croatian Science Foundation under the Project MultiFM IP-2019-04-1140. O. K., Š. N. and A. R. have been supported by the Czech Science Foundation (GAČR) project GA19-04243S. The Institute of Mathematics, CAS is supported by RVO:67985840. The research of T.T. is supported by the NSFC Grant No. 11801138. Moreover, Š. N was partially supported by the special Grant of Jiangsu Provincial policy guidance plan for introducing foreign talents–BX2020082, T. T is supported by the special grant of Jiangsu Provincial policy guidance plan for introducing foreign talents–BX2020082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Nečasová.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by F. Gazzola

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Fundamental Theorem on Young Measure

In the following, with a slightly different notation, we recall the Fundamental Theorem on Young measure discussed in [37]. Further, \({\mathcal {M}}({\mathbb {R}}^d)\) denotes the space of Radon measures on \({\mathbb {R}}^d\).

Theorem 4.1

Let \(A \subset {\mathbb {R}}^n\) be a measurable set of finite measure and let \(f_j : A \rightarrow {\mathbb {R}}^d\) be a sequence of measurable functions. Then there exists a subsequence \(f_{j_{k}}\) and a weak – \(*\) measurable map \(Y : A \rightarrow {\mathcal {M}}({\mathbb {R}}^d)\), such that the following holds

  1. 1.

    \(Y_x \ge 0\), \(\Vert Y_x \Vert _{{\mathcal {M}}({\mathbb {R}}^d)}=\int _{{\mathbb {R}}^d} dY_x \le 1,\) for a.a. \(x\in A\);

  2. 2.

    For every \(g \in C_c({\mathbb {R}}^d)\), we have

    $$\begin{aligned} g(f_{j_{k}}) \rightarrow {\overline{g}} \ \ weakly{\hbox {-}}* \ in \ L^\infty (A),\\ {\overline{g}}(x) = \langle Y_x,g\rangle = \int _{{\mathbb {R}}^d} g dY_x. \end{aligned}$$
  3. 3.

    Furthermore, if

    $$\begin{aligned} \lim _{m \rightarrow \infty } \sup _k |\{ |f_{j_{k}}|\ge m \}| = 0 \end{aligned}$$
    (4.1)

    we have

    $$\begin{aligned} \Vert Y_x \Vert _{{\mathcal {M}}({\mathbb {R}}^d)}=1. \end{aligned}$$

As remarked in [37, Remark 2.9, Chapter 4], if \(f_{j_{k}}\) are uniformly bounded in \(L^p(A)^d\) for \(p \in [1,\infty )\), the condition (4.1) is satisfied.

1.2 Reynolds Transport Theorem

For completeness of presentation we state here the Reynolds transport theorem which is one of the key ingredients in analysis of fluid on moving domains.

Theorem 4.2

Let f be a function such that all integrals in the formula below are well defined. Let \(\mathbf{u} _{{\mathcal {B}}}\) be a rigid velocity field describing the motion of the body \({{\mathcal {B}}}(t)\). Then the following formula for time derivative of an integral over the fluid domain holds.

$$\begin{aligned} \frac{d}{dt}\int _{{{\mathcal {F}}}(t)} f \,\mathrm{d}{{\mathbf {x}}}= \int _{{{\mathcal {F}}}(t)} \partial _t f \,\mathrm{d}{{\mathbf {x}}}+ \int _{\partial {{\mathcal {B}}}(t)} f \mathbf{u} _{{\mathcal {B}}}\cdot \mathbf{n} \, \mathrm{d} {S}\end{aligned}$$
(4.2)

1.3 Weak Formulation of the Momentum Equation

In this section, we present the calculation behind the weak formulation of the momentum equation (2.6).

Let all the functions be sufficiently smooth so that we can do integration by parts. We multiply equation (1.2)\(_1\) by test function \(\pmb {\varphi }\in V_T\) and integrate over \(\mathcal {F}(t)\) to obtain

$$\begin{aligned}&\frac{d}{dt} \int _{\mathcal {F}(t)} \mathbf{u} _{\mathcal {F}}\cdot \pmb {\varphi }_{\mathcal {F}} - \int _{\mathcal {F}(t)} \mathbf{u} _{\mathcal {F}}\cdot \frac{\partial }{\partial t}\pmb {\varphi }_{\mathcal {F}} - \int _{\mathcal {F}(t)} (\mathbf{u} _{\mathcal {F}} \otimes \mathbf{u} _{\mathcal {F}}) : \nabla \pmb {\varphi }_{\mathcal {F}}\nonumber \\&\quad = -\int _{\partial \Omega } p_{\mathcal {F}}{\mathbb {I}} \mathbf{n} \cdot \pmb {\varphi }_{\mathcal {F}} - \int _{\partial \mathcal {B}(t)} p_{\mathcal {F}}{\mathbb {I}} \mathbf{n} \cdot \pmb {\varphi }_{\mathcal {F}}. \end{aligned}$$
(4.3)

As \(\pmb {\varphi }\in V_T\), we have \(\pmb {\varphi }_{\mathcal {F}} \cdot \mathbf{n} =0\) on \(\partial \Omega \). Using the Reynolds transport theorem 4.2 and the mass transport of the body we have

$$\begin{aligned}&\frac{d}{dt}\int _{\mathcal {B}(t)}\varrho _{{\mathcal {B}}}\mathbf{u} _{{\mathcal {B}}}\cdot \pmb {\varphi }_{\mathcal {B}} = \int _{\mathcal {B}(t)} \frac{\partial }{\partial t} (\varrho _{{\mathcal {B}}}\mathbf{u} _{{\mathcal {B}}}\cdot \pmb {\varphi }_{\mathcal {B}}) + \int _{\mathcal {B}(t)} \mathrm{div}\left( \varrho _{{\mathcal {B}}}\mathbf{u} _{\mathcal {B}}(\mathbf{u} _{{\mathcal {B}}}\cdot \pmb {\varphi }_{\mathcal {B}})\right) \\&\quad = \int _{\mathcal {B}(t)} \varrho _{{\mathcal {B}}}\mathbf{u} _{{\mathcal {B}}}\cdot \frac{\partial }{\partial t} \pmb {\varphi }_{\mathcal {B}} + \int _{\mathcal {B}(t)} \varrho _{{\mathcal {B}}}\Big (\frac{\partial }{\partial t} \mathbf{u} _{{\mathcal {B}}} + \mathbf{u} _{{\mathcal {B}}} \cdot \nabla \mathbf{u} _{{\mathcal {B}}}\Big )\cdot \pmb {\varphi }_{\mathcal {B}} + \int _{\mathcal {B}(t)} \rho _{{{\mathcal {B}}}} (\mathbf {u}_{\mathcal {B}} \otimes \mathbf{u} _{{\mathcal {B}}}) : \nabla \pmb {\varphi }_{\mathcal {B}}. \end{aligned}$$

As \({\mathbb {D}}(\pmb {\varphi }_{\mathcal {B}})=0\), we have \((\mathbf {u}_{\mathcal {B}} \otimes \mathbf{u} _{{\mathcal {B}}}) : \nabla \pmb {\varphi }_{\mathcal {B}}=0\). Using the rigid body equations (1.4) and the boundary condition \(\pmb {\varphi }_{{{\mathcal {F}}}} \cdot \mathbf{n} = \pmb {\varphi }_{{{\mathcal {B}}}} \cdot \mathbf{n} \) on \(\partial {\mathcal {B}}(t)\), we obtain

$$\begin{aligned} - \int _{\partial \mathcal {B}(t)} p_{\mathcal {F}}{\mathbb {I}} \mathbf{n} \cdot \pmb {\varphi }_{\mathcal {F}} = -\frac{d}{dt}\int _{\mathcal {B}(t)}\varrho _{{\mathcal {B}}}\mathbf{u} _{\mathcal {B}}\cdot \pmb {\varphi }_{\mathcal {B}} + \int _{\mathcal {B}(t)} \varrho _{{\mathcal {B}}}\mathbf{u} _{\mathcal {B}}\cdot \frac{\partial }{\partial t} \pmb {\varphi }_{\mathcal {B}} . \end{aligned}$$
(4.4)

Thus by combining the above relations (4.3)–(4.4) and then integrating in time, we have

$$\begin{aligned} - \int _0^\tau \int _{\mathcal {F}(t)} \mathbf{u} _{\mathcal {F}}\cdot \frac{\partial }{\partial t}\pmb {\varphi }_{\mathcal {F}} - \int _0^\tau \int _{\mathcal {B}(t)}\varrho _{{\mathcal {B}}}\mathbf{u} _{\mathcal {B}}\cdot \frac{\partial }{\partial t}\pmb {\varphi }_{\mathcal {B}} - \int _0^\tau \int _{\mathcal {F}(t)} (\mathbf{u} _{\mathcal {F}} \otimes \mathbf{u} _{\mathcal {F}}) : \nabla \pmb {\varphi }_{\mathcal {F}} \end{aligned}$$
$$\begin{aligned} = \int _{\mathcal {F}_0} (\mathbf{u} _{\mathcal {F}}\cdot \pmb {\varphi }_{\mathcal {F}})(0) - \int _{\mathcal {F}_\tau } (\mathbf{u} _{\mathcal {F}}\cdot \pmb {\varphi }_{\mathcal {F}})(\tau ) + \int _{\mathcal {B}_0} (\varrho _{{\mathcal {B}}}\mathbf{u} _{\mathcal {B}}\cdot \pmb {\varphi }_{\mathcal {B}})(0) - \int _{\mathcal {B}_\tau } (\varrho _{{\mathcal {B}}}\mathbf{u} _{\mathcal {B}}\cdot \pmb {\varphi }_{\mathcal {B}})(\tau ) \end{aligned}$$
(4.5)

for \(\tau \in [0,T]\).

1.4 Derivation of (3.26)

We multiply Eq. (3.17)\(_1\) by test function \(\pmb {\varphi }\in V_T\), integrate over \(\mathcal {F}_1(t)\) and use the Reynolds transport theorem 4.2 to obtain

$$\begin{aligned}&\frac{d}{dt} \int _{\mathcal {F}_1(t)} \mathbf{U}^s_{{{\mathcal {F}}}}\cdot \pmb {\varphi }_{\mathcal {F}} - \int _{\mathcal {F}_1(t)} \mathbf{U}^s_{{{\mathcal {F}}}}\cdot \frac{\partial }{\partial t}\pmb {\varphi }_{\mathcal {F}}\nonumber \\&\qquad - \int _{\mathcal {F}_1(t)}\Big ( \langle Y_{t,{{\mathbf {x}}}},\mathbf{u} _{1\mathcal {F}}\rangle \otimes \mathbf{U} ^s_{\mathcal {F}}) : \nabla \pmb {\varphi }_{\mathcal {F}} - (\mathbf {U}^s_\mathcal {F} - \langle Y_{t,{{\mathbf {x}}}},\mathbf{u} _{1\mathcal {F}}\rangle )\cdot \nabla \mathbf {U}^s_\mathcal {F}\cdot \pmb {\varphi }_{\mathcal {F}} \Big )\nonumber \\&\quad = -\int _{\partial \Omega } P^s_{\mathcal {F}}{\mathbb {I}} \mathbf{n} \cdot \pmb {\varphi }_{\mathcal {F}} - \int _{\partial \mathcal {B}_1(t)} P^s_{\mathcal {F}}{\mathbb {I}} \mathbf{n} \cdot \pmb {\varphi }_{\mathcal {F}} + \int _{\mathcal {F}_1(t)} \mathbf {F}\cdot \pmb {\varphi }_{\mathcal {F}}, \end{aligned}$$
(4.6)

where we combine the weak formulation of the continuity equation and the boundary condition. As \(\pmb {\varphi }\in V_T\), we have \(\pmb {\varphi }_{\mathcal {F}} \cdot \mathbf{n} =0\) on \(\partial \Omega \). We use the Reynolds transport theorem 4.2 together with the mass transport of the body to obtain

$$\begin{aligned}&\frac{d}{dt}\int _{{{\mathcal {B}}}_1(t)}\varrho _{{{\mathcal {B}}}} \mathbf{U}^s_{{{\mathcal {B}}}}\cdot \pmb {\varphi }_{\mathcal {B}} = \int _{\mathcal {B}_1(t)} \frac{\partial }{\partial t} (\varrho _{{{\mathcal {B}}}} \mathbf{U} ^s_{\mathcal {B}}\cdot \pmb {\varphi }_{\mathcal {B}}) + \int _{\mathcal {B}_1(t)} \mathrm{div}\left( \varrho _{{{\mathcal {B}}}}\mathbf{u} _{1\mathcal {B}} (\mathbf{U} ^s_{\mathcal {B}}\cdot \pmb {\varphi }_{\mathcal {B}})\right) \\&\quad = \int _{\mathcal {B}_1(t)} \varrho _{{{\mathcal {B}}}}\mathbf{U} ^s_{\mathcal {B}}\cdot \frac{\partial }{\partial t} \pmb {\varphi }_{\mathcal {B}} + \int _{\mathcal {B}_1(t)} \varrho _{{{\mathcal {B}}}} \Big (\frac{\partial }{\partial t} \mathbf{U} ^s_{\mathcal {B}}\\&\qquad + \mathbf{U} ^s_{\mathcal {B}} \cdot \nabla \mathbf{U} ^s_{\mathcal {B}}\Big )\cdot \pmb {\varphi }_{\mathcal {B}} + \int _{\mathcal {B}_1(t)} \rho _{{{\mathcal {B}}}}\Big ( (\mathbf {u}_{1\mathcal {B}} \otimes \mathbf{U} ^s_{\mathcal {B}}) : \nabla \pmb {\varphi }_{\mathcal {B}} - (\mathbf {U}^s_{\mathcal {B}} -\mathbf {u}_{1\mathcal {B}})\cdot \nabla \mathbf {U}^s_{\mathcal {B}}\cdot \pmb {\varphi }_{\mathcal {B}} \Big ). \end{aligned}$$

Using the rigid body equations (3.22)–(3.23) and the boundary condition \(\pmb {\varphi }_{{{\mathcal {F}}}} \cdot \mathbf{n} = \pmb {\varphi }_{{{\mathcal {B}}}} \cdot \mathbf{n} \) on \(\partial {\mathcal {B}}_1(t)\), we obtain

$$\begin{aligned}&- \int _{\partial \mathcal {B}_1(t)} P^s_{\mathcal {F}}{\mathbb {I}} \mathbf{n} \cdot \pmb {\varphi }_{\mathcal {F}} = -\frac{d}{dt}\int _{\mathcal {B}_1(t)}\varrho _{{\mathcal {B}}}\mathbf{u} _{\mathcal {B}}\cdot \pmb {\varphi }_{\mathcal {B}}\nonumber \\&\quad + \int _{\mathcal {B}_1(t)} \varrho _{{\mathcal {B}}}\mathbf{u} _{\mathcal {B}}\cdot \frac{\partial }{\partial t} \pmb {\varphi }_{\mathcal {B}} + \int _{\mathcal {B}_1(t)} \rho _{{{\mathcal {B}}}}\Big ( (\mathbf {u}_{1\mathcal {B}} \otimes \mathbf{U} ^s_{\mathcal {B}}) : \nabla \pmb {\varphi }_{\mathcal {B}} - (\mathbf {U}^s_\mathcal {B} -\mathbf {u}_{1\mathcal {B}})\cdot \nabla \mathbf {U}^s_\mathcal {B}\cdot \pmb {\varphi }_{\mathcal {B}} \Big )\nonumber \\&\quad - ((\mathbf{w} ^s-\mathbf{w} _1)\times (\mathbb {J}_1 \mathbf{w} ^s)\cdot \pmb {\varphi }_{{\mathcal {B}},\mathbf {w}}+m(\mathbf{w} ^s-\mathbf{w} _1)\times \mathbf {V}^s\cdot \pmb {\varphi }_{{\mathcal {B}},\mathbf {V}}). \end{aligned}$$
(4.7)

Thus by combining the above relations (4.6)–(4.7) and then integrating in time, we have for \(\tau \in [0,T]\):

$$\begin{aligned}&- \int _0^\tau \int _{\mathcal {F}_1(t)} \mathbf{U} ^s_{\mathcal {F}}\cdot \frac{\partial }{\partial t}\pmb {\varphi }_{\mathcal {F}} - \int _0^\tau \int _{\mathcal {B}_1(t)}\varrho _{{\mathcal {B}}}\mathbf{U} ^s_{\mathcal {B}}\cdot \frac{\partial }{\partial t}\pmb {\varphi }_{\mathcal {B}}\nonumber \\&\quad - \int _0^\tau \int _{\mathcal {F}_1(t)}\Big ( ( \langle Y_{t,{{\mathbf {x}}}},\mathbf{u} _{1\mathcal {F}}\rangle \otimes \mathbf{U} ^s_{\mathcal {F}}) : \nabla \pmb {\varphi }_{\mathcal {F}} - (\mathbf {U}^s_\mathcal {F} - \langle Y_{t,{{\mathbf {x}}}},\mathbf{u} _{1\mathcal {F}}\rangle )\cdot \nabla \mathbf {U}^s_\mathcal {F}\cdot \pmb {\varphi }_{\mathcal {F}} \Big )\\&\quad - \int _0^\tau \int _{\mathcal {B}_1(t)} \rho _{{{\mathcal {B}}}}\Big ( (\mathbf {u}_{1\mathcal {B}} \otimes \mathbf{U} ^s_{\mathcal {B}}) : \nabla \pmb {\varphi }_{\mathcal {B}} - (\mathbf {U}^s_\mathcal {B} -\mathbf {u}_{1\mathcal {B}})\cdot \nabla \mathbf {U}^s_\mathcal {B}\cdot \pmb {\varphi }_{\mathcal {B}} \Big ) = \int _{0}^{\tau }\int _{\mathcal {F}_1(t)}\big ( \mathbf {F}\cdot \pmb {\varphi }_{\mathcal {F}}\big )\\&\quad - \int _{0}^{\tau }((\mathbf{w} ^s-\mathbf{w} _1)\times (\mathbb {J}_1 \mathbf{w} ^s)\cdot \pmb {\varphi }_{{\mathcal {B}},\mathbf {w}}+m(\mathbf{w} ^s-\mathbf{w} _1)\times \mathbf {V}^s\cdot \pmb {\varphi }_{{\mathcal {B}},\mathbf {V}}) + \int _{\mathcal {F}_0} (\mathbf{U} ^s_{\mathcal {F}}\cdot \pmb {\varphi }_{\mathcal {F}})(0)\\&\quad - \int _{\mathcal {F}_1(\tau )} (\mathbf{U} ^s_{\mathcal {F}}\cdot \pmb {\varphi }_{\mathcal {F}})(\tau ) + \int _{\mathcal {B}_0} (\varrho _{{\mathcal {B}}}\mathbf{U} ^s_{\mathcal {B}}\cdot \pmb {\varphi }_{\mathcal {B}})(0) - \int _{\mathcal {B}_1(\tau )} (\varrho _{{\mathcal {B}}}\mathbf{U} ^s_{\mathcal {B}}\cdot \pmb {\varphi }_{\mathcal {B}})(\tau ). \end{aligned}$$

1.5 Derivation of (3.40)

In this section, we follow the calculations of [36, Appendix] to derive our desired identity. We know that

$$\begin{aligned} \mathbf{u} _{1 {{\mathcal {B}}}}(t,x)&= \mathbf{V} _1(t) + \mathbf{w} _1(t) \times ({{\mathbf {x}}}- {{\mathbf {X}}}_1(t)) \qquad \text { in } Q_{{{\mathcal {B}}}_1} \\ \mathbf{U}^s_{{{\mathcal {B}}}}(t,x)&= \mathbf{V} ^s(t) + \mathbf{w} ^s(t) \times ({{\mathbf {x}}}- {{\mathbf {X}}}_1(t)) \qquad \text { in } Q_{{{\mathcal {B}}}_1}. \end{aligned}$$

A simple calculation gives

$$\begin{aligned} \frac{\partial \mathbf{U}^s_{{{\mathcal {B}}}}}{\partial t} + (\mathbf{U}^s_{{{\mathcal {B}}}}\cdot \nabla )\mathbf{U}^s_{{{\mathcal {B}}}} = \frac{\mathrm{d} \mathbf{V} ^s}{\mathrm{d} t} + \frac{\mathrm{d} \mathbf{w} ^s}{\mathrm{d} t}\times ({{\mathbf {x}}}-{{\mathbf {X}}}_1) + \mathbf{w} ^s \times (\mathbf{w} ^s \times ({{\mathbf {x}}}-{{\mathbf {X}}}_1)) \quad \text { in } Q_{{{\mathcal {B}}}_1}. \end{aligned}$$
(4.8)

We use (3.22) to deduce

$$\begin{aligned} \int _{{{\mathcal {B}}}_1(t)} \varrho _{{\mathcal {B}}}\frac{\mathrm{d} \mathbf{V} ^s}{\mathrm{d} t}\cdot \mathbf{V} _1 = \int _{\partial {{\mathcal {B}}}_1(t)} P^s_{{{\mathcal {F}}}}\mathbf{n} \cdot \mathbf{V} _1 - (m(\mathbf{w} ^s-\mathbf{w} _1)\times \mathbf {V}^s)\cdot \mathbf{V} _1. \end{aligned}$$
(4.9)

Next, by (1.6) we get

$$\begin{aligned}&\int _{{{\mathcal {B}}}_1(t)} \varrho _{{\mathcal {B}}}\frac{\mathrm{d} \mathbf{V} ^s}{\mathrm{d} t}\cdot (\mathbf{w} _1\times ({{\mathbf {x}}}-{{\mathbf {X}}}_1)) = \left( \frac{\mathrm{d} \mathbf{V} ^s}{\mathrm{d} t} \times \mathbf{w} _1\right) \cdot \int _{{{\mathcal {B}}}_1(t)} \varrho _{{\mathcal {B}}}({{\mathbf {x}}}-{{\mathbf {X}}}_1) = 0, \end{aligned}$$
(4.10)
$$\begin{aligned}&\int _{{{\mathcal {B}}}_1(t)} \varrho _{{\mathcal {B}}}\left( \frac{\mathrm{d} \mathbf{w} ^s}{\mathrm{d} t} \times ({{\mathbf {x}}}-{{\mathbf {X}}}_1)\right) \cdot \mathbf{V} _1 = \mathbf{V} _1\cdot \left( \frac{\mathrm{d} \mathbf{w} ^s}{\mathrm{d} t} \times \int _{{{\mathcal {B}}}_1(t)} \varrho _{{\mathcal {B}}}({{\mathbf {x}}}-{{\mathbf {X}}}_1) \right) = 0, \end{aligned}$$
(4.11)
$$\begin{aligned}&\int _{{{\mathcal {B}}}_1(t)} \varrho _{{\mathcal {B}}}(\mathbf{w} ^s\times (\mathbf{w} ^s\times ({{\mathbf {x}}}-{{\mathbf {X}}}_1))\cdot \mathbf{V} _1 = \mathbf{V} _1\cdot \left( \mathbf{w} ^s\times \left( \mathbf{w} ^s\times \int _{{{\mathcal {B}}}_1(t)} \varrho _{{\mathcal {B}}}({{\mathbf {x}}}-{{\mathbf {X}}}_1) \right) \right) = 0. \end{aligned}$$
(4.12)

Using (1.7) and (3.23) we obtain

$$\begin{aligned}&\int _{{{\mathcal {B}}}_1(t)} \varrho _{{\mathcal {B}}}\left( \frac{\mathrm{d} \mathbf{w} ^s}{\mathrm{d} t} \times ({{\mathbf {x}}}-{{\mathbf {X}}}_1)\right) \cdot (\mathbf{w} _1\times ({{\mathbf {x}}}-{{\mathbf {X}}}_1)) = \mathbb {J}_1\frac{\mathrm{d} \mathbf{w} ^s}{\mathrm{d} t}\cdot \mathbf{w} _1 \nonumber \\&\quad = (\mathbb {J}_1\mathbf{w} ^s \times \mathbf{w} ^s)\cdot \mathbf{w} _1 - ((\mathbf{w} ^s-\mathbf{w} _1)\times (\mathbb {J}_1 \mathbf{w} ^s))\cdot \mathbf{w} _1 + \mathbf{w} _1\cdot \int _{\partial {{\mathcal {B}}}_1(t)} ({{\mathbf {x}}}-{{\mathbf {X}}}_1)\times P^s_{{{\mathcal {F}}}}\mathbf{n} \nonumber \\&\quad = \mathbb {J}_1\mathbf{w} ^s \cdot (\mathbf{w} ^s\times \mathbf{w} _1) - ((\mathbf{w} ^s-\mathbf{w} _1)\times (\mathbb {J}_1 \mathbf{w} ^s))\cdot \mathbf{w} _1 + \int _{\partial {{\mathcal {B}}}_1(t)} P^s_{{{\mathcal {F}}}}\mathbf{n} \cdot (\mathbf{w} _1 \times ({{\mathbf {x}}}-{{\mathbf {X}}}_1)). \end{aligned}$$
(4.13)

We also have

$$\begin{aligned} \int _{{{\mathcal {B}}}_1(t)} \varrho _{{\mathcal {B}}}\left( \mathbf{w} ^s\times \left( \mathbf{w} ^s \times ({{\mathbf {x}}}-{{\mathbf {X}}}_1)\right) \right) \cdot (\mathbf{w} _1\times ({{\mathbf {x}}}-{{\mathbf {X}}}_1)) = - \mathbb {J}_1\mathbf{w} ^s\cdot (\mathbf{w} ^s\times \mathbf{w} _1). \end{aligned}$$
(4.14)

Summing (4.9)–(4.14) and using (4.8) we end up with

$$\begin{aligned} \int _0^\tau \int _{\mathcal {B}_1(t)}\Big (\varrho _{{\mathcal {B}}}\mathbf{U} ^s_{\mathcal {B}}\cdot \nabla \mathbf{U} ^s_{\mathcal {B}} \cdot \mathbf {u}_{1\mathcal {B}}+ \varrho _{{\mathcal {B}}}\mathbf{u} _{1\mathcal {B}}\cdot {\partial _ t}\mathbf{U} ^s_{\mathcal {B}} \Big )= & {} \int _0^\tau \int _{\partial \mathcal {B}_1(t)} (\mathbf{u} _{1\mathcal {B}}\cdot \mathbf{n} ) P^s_{\mathcal {F}} - \int _0^{\tau } (m(\mathbf{w} ^s-\mathbf{w} _1)\times \mathbf {V}^s)\cdot \mathbf{V} _1\\&- \int _0^{\tau }((\mathbf{w} ^s-\mathbf{w} _1)\times (\mathbb {J}_1 \mathbf{w} ^s))\cdot \mathbf{w} _1. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caggio, M., Kreml, O., Nečasová, Š. et al. Measure-Valued Solutions and Weak–Strong Uniqueness for the Incompressible Inviscid Fluid–Rigid Body Interaction. J. Math. Fluid Mech. 23, 50 (2021). https://doi.org/10.1007/s00021-021-00581-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00581-3

Mathematics Subject Classification

Keywords

Navigation