Skip to main content
Log in

Misaligned feeding schedule elicits divergent circadian reorganizations in endo- and exocrine pancreas clocks

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Misaligned feeding may lead to pancreatic insufficiency, however, whether and how it affects circadian clock in the exocrine pancreas is not known. We exposed rats to a reversed restricted feeding regimen (rRF) for 10 or 20 days and analyzed locomotor activity, daily profiles of hormone levels (insulin, glucagon, and corticosterone) in plasma, and clock gene expression in the liver and endocrine and exocrine pancreas. In addition, we monitored responses of the exocrine pancreatic clock in organotypic explants of mPer2Luc mice in real time to acetylcholine, insulin, and glucocorticoids. rRF phase-reversed the clock in the endocrine pancreas, similar to the clock in the liver, but completely abolished clock gene rhythmicity and significantly downregulated the expression of Cpb1 and Cel in the exocrine pancreas. rRF desynchronized the rhythms of plasma insulin and corticosterone. Daily profiles of their receptor expression differed in the two parts of the pancreas and responded differently to rRF. Additionally, the pancreatic exocrine clock responded differently to treatments with insulin and the glucocorticoid analog dexamethasone in vitro. Mathematical simulation confirmed that the long-term misalignment between these two hormonal signals, as occurred under rRF, may lead to dampening of the exocrine pancreatic clock. In summary, our data suggest that misaligned meals impair the clock in the exocrine part of the pancreas by uncoupling insulin and corticosterone rhythms. These findings suggest a new mechanism by which adverse dietary habits, often associated with shift work in humans, may impair the clock in the exocrine pancreas and potentially contribute to exocrine pancreatic insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are presented.

References

  1. Salgado-Delgado R, Angeles-Castellanos M, Saderi N et al (2010) Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151:1019–1029. https://doi.org/10.1210/en.2009-0864

    Article  CAS  PubMed  Google Scholar 

  2. Arble DM, Bass J, Laposky AD et al (2009) Circadian timing of food intake contributes to weight gain. Obesity 17:2100–2102. https://doi.org/10.1038/oby.2009.264

    Article  PubMed  Google Scholar 

  3. Stenvers DJ, Scheer FAJL, Schrauwen P et al (2019) Circadian clocks and insulin resistance. Nat Rev Endocrinol 15:75–89. https://doi.org/10.1038/s41574-018-0122-1

    Article  CAS  PubMed  Google Scholar 

  4. Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:90–99. https://doi.org/10.1016/j.tcb.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  5. Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102. https://doi.org/10.1152/physrev.00009.2009

    Article  CAS  PubMed  Google Scholar 

  6. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549. https://doi.org/10.1146/annurev-physiol-021909-135821

    Article  CAS  PubMed  Google Scholar 

  7. Damiola F, Le Minli N, Preitner N et al (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961. https://doi.org/10.1101/gad.183500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Polidarová L, Sládek M, Nováková M et al (2013) Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats—a potential role for Bmal2 in the liver. PLoS ONE 8:e75690. https://doi.org/10.1371/journal.pone.0075690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sladek M, Rybova M, Jindrakova Z et al (2007) Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 133:1240–1249. https://doi.org/10.1053/j.gastro.2007.05.053

    Article  CAS  PubMed  Google Scholar 

  10. Oishi K, Yasumoto Y, Higo-Yamamoto S et al (2017) Feeding cycle-dependent circulating insulin fluctuation is not a dominant Zeitgeber for mouse peripheral clocks except in the liver: differences between endogenous and exogenous insulin effects. Biochem Biophys Res Commun 483:165–170. https://doi.org/10.1016/j.bbrc.2016.12.173

    Article  CAS  PubMed  Google Scholar 

  11. Bray MS, Ratcliffe WF, Grenett MH et al (2013) Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int J Obes 37:843–852. https://doi.org/10.1038/ijo.2012.137

    Article  CAS  Google Scholar 

  12. Le Minh N, Damiola F, Tronche F et al (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20:7128–7136. https://doi.org/10.1093/emboj/20.24.7128

    Article  PubMed  PubMed Central  Google Scholar 

  13. Perelis M, Marcheva B, Moynihan Ramsey K et al (2015) Pancreatic cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science (80-) 350:aac4250–aac4250. https://doi.org/10.1126/science.aac4250

    Article  CAS  Google Scholar 

  14. Sadacca LA, Lamia KA, DeLemos AS et al (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54:120–124. https://doi.org/10.1007/s00125-010-1920-8

    Article  CAS  PubMed  Google Scholar 

  15. Maouyo D, Sarfati P, Guan D et al (1993) Circadian rhythm of exocrine pancreatic secretion in rats: Major and minor cycles. Am J Physiol - Gastrointest Liver Physiol 264:G792–G800. https://doi.org/10.1152/ajpgi.1993.264.4.g792

    Article  CAS  Google Scholar 

  16. Thaela M-J, Pierzynowski SG, Jensen MS et al (1995) The pattern of the circadian rhythm of pancreatic secretion in fed pigs. J Anim Sci 73:3402–3408. https://doi.org/10.2527/1995.73113402x

    Article  CAS  PubMed  Google Scholar 

  17. Keller J, Gröger G, Cherian L et al (2001) Circadian coupling between pancreatic secretion and intestinal motility in humans. Am J Physiol Liver Physiol 280:G273–G278. https://doi.org/10.1152/ajpgi.2001.280.2.G273

    Article  CAS  Google Scholar 

  18. Seshadri N, Doucette CA (2021) Circadian regulation of the pancreatic beta cell. Endocrinology. https://doi.org/10.1210/endocr/bqab089

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bellinger LL, Mendel VE, Moberg GP (1975) Circadian insulin, GH, prolactin, corticosterone and glucose rhythms in fed and fasted rats. Horm Metab Res 7:132–135. https://doi.org/10.1055/s-0028-1093763

    Article  CAS  Google Scholar 

  20. Kalsbeek A, Strubbe JH (1998) Circadian control of insulin secretion is independent of the temporal distribution of feeding. Physiol Behav 63:553–560. https://doi.org/10.1016/S0031-9384(97)00493-9

    Article  CAS  PubMed  Google Scholar 

  21. Marcheva B, Ramsey KM, Buhr ED et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631. https://doi.org/10.1038/nature09253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Woller A, Gonze D (2018) Modeling clock-related metabolic syndrome due to conflicting light and food cues. Sci Rep 8:13641. https://doi.org/10.1038/s41598-018-31804-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gale JE, Cox HI, Qian J et al (2011) Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J Biol Rhythms 26:423–433. https://doi.org/10.1177/0748730411416341

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reutrakul S, Knutson KL (2015) Consequences of circadian disruption on cardiometabolic health. Sleep Med Clin 10:455–468. https://doi.org/10.1016/j.jsmc.2015.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mukherji A, Kobiita A, Damara M et al (2015) Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci 112:E6691–E6698. https://doi.org/10.1073/pnas.1519807112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sládek M, Polidarová L, Nováková M et al (2012) Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLoS ONE 7:e46951. https://doi.org/10.1371/journal.pone.0046951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Novosadová Z, Polidarová L, Sládek M, Sumová A (2018) Alteration in glucose homeostasis and persistence of the pancreatic clock in aged mPer2Luc mice. Sci Rep 8:11668. https://doi.org/10.1038/s41598-018-30225-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tinevez J-Y, Perry N, Schindelin J et al (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90. https://doi.org/10.1016/j.ymeth.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  29. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  30. Sládek M, Houdek P, Sumová A (2019) Circadian profiling reveals distinct regulation of endocannabinoid system in the rat plasma, liver and adrenal glands by light-dark and feeding cycles. Biochim Biophys Acta - Mol Cell Biol Lipids 1864:158533. https://doi.org/10.1016/j.bbalip.2019.158533

    Article  CAS  PubMed  Google Scholar 

  31. Harbour VL, Weigl Y, Robinson B, Amir S (2014) Phase differences in expression of circadian clock genes in the central nucleus of the amygdala, dentate gyrus, and suprachiasmatic nucleus in the rat. PLoS ONE 9:e103309. https://doi.org/10.1371/journal.pone.0103309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hara R, Wan K, Wakamatsu H et al (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278. https://doi.org/10.1046/j.1365-2443.2001.00419.x

    Article  CAS  PubMed  Google Scholar 

  33. García-Gaytán AC, Miranda-Anaya M, Turrubiate I et al (2020) Synchronization of the circadian clock by time-restricted feeding with progressive increasing calorie intake. Resemblances and differences regarding a sustained hypocaloric restriction. Sci Rep 10:10036. https://doi.org/10.1038/s41598-020-66538-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crosby P, Hamnett R, Putker M et al (2019) Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell 177:896-909.e20. https://doi.org/10.1016/j.cell.2019.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oster H, Damerow S, Kiessling S et al (2006) The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4:163–173. https://doi.org/10.1016/j.cmet.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  36. Pérez-Mendoza M, Rivera-Zavala JB, Díaz-Muñoz M (2014) Daytime restricted feeding modifies the daily variations of liver gluconeogenesis: adaptations in biochemical and endocrine regulators. Chronobiol Int 31:815–828. https://doi.org/10.3109/07420528.2014.908898

    Article  CAS  PubMed  Google Scholar 

  37. Luna-Moreno D, Aguilar-Roblero R, Díaz-Muñoz M (2009) Restricted feeding entrains rhythms of inflammation-related factors without promoting an acute-phase response. Chronobiol Int 26:1409–1429. https://doi.org/10.3109/07420520903417003

    Article  CAS  PubMed  Google Scholar 

  38. Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM (1998) Restricted daytime feeding modifies suprachiasmatic nucleus vasopressin release in rats. J Biol Rhythms 13:18–29. https://doi.org/10.1177/074873098128999880

    Article  CAS  PubMed  Google Scholar 

  39. Selmaoui B, Bah TM, Brazzini-Poisson V, Godbout R (2003) Daily changes of plasma corticosterone by an 8-h daytime feeding occur without body weight loss or severe food restriction in the rat. Biol Rhythm Res 34:423–434. https://doi.org/10.1076/brhm.34.5.423.27856

    Article  CAS  Google Scholar 

  40. Honma KI, Honma S, Hiroshige T (1983) Critical role of food amount for prefeeding corticosterone peak in rats. Am J Physiol Integr Comp Physiol 245:R339–R344. https://doi.org/10.1152/ajpregu.1983.245.3.R339

    Article  CAS  Google Scholar 

  41. Pulimeno P, Mannic T, Sage D et al (2013) Autonomous and self-sustained circadian oscillators displayed in human islet cells. Diabetologia 56:497–507. https://doi.org/10.1007/s00125-012-2779-7

    Article  CAS  PubMed  Google Scholar 

  42. Petrenko V, Saini C, Giovannoni L et al (2017) Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression. Genes Dev 31:383–398. https://doi.org/10.1101/gad.290379.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buijs RM, Chun SJ, Niijima A et al (2001) Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol 431:405–423. https://doi.org/10.1002/1096-9861(20010319)431:4%3c405::AID-CNE1079%3e3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  44. Adablah JE, Vinson R, Roper MG, Bertram R (2019) Synchronization of pancreatic islets by periodic or non-periodic muscarinic agonist pulse trains. PLoS ONE 14:e0211832. https://doi.org/10.1371/journal.pone.0211832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakamura K, Hamada K, Terauchi A et al (2013) Distinct roles of M1 and M3 muscarinic acetylcholine receptors controlling oscillatory and non-oscillatory [Ca2+]i increase. Cell Calcium 54:111–119. https://doi.org/10.1016/j.ceca.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  46. Johansson BB, Fjeld K, El Jellas K et al (2018) The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology 18:12–19. https://doi.org/10.1016/j.pan.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  47. Tamura K, Yu J, Hata T et al (2018) Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci 115:4767–4772. https://doi.org/10.1073/pnas.1720588115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Antunes LC, Levandovski R, Dantas G et al (2010) Obesity and shift work: chronobiological aspects. Nutr Res Rev 23:155–168. https://doi.org/10.1017/S0954422410000016

    Article  CAS  PubMed  Google Scholar 

  49. Nunes ACR, Pontes JM, Rosa A et al (2003) Screening for pancreatic exocrine insufficiency in patients with diabetes mellitus. Am J Gastroenterol 98:2672–2675. https://doi.org/10.1111/j.1572-0241.2003.08730.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mgr. Karolina Liska for help with IPGTT and Eva Tlusta for technical assistance.

Funding

The study was supported by the OPPK BrainView CZ.2.16/3.1.00/21544, MEYS (LM2015062 Czech-BioImaging), and the Research Project RV0: 67985823.

Author information

Authors and Affiliations

Authors

Contributions

PeH data acquisition, investigation, methodology, writing a draft, manuscript reviewing, statistical analysis; ZN data acquisition, methodology; PaH data acquisition, investigation, methodology; MS methodology, manuscript reviewing; AS conceptualization, study supervision, formal analysis, methodology, writing draft, manuscript reviewing.

Corresponding author

Correspondence to Alena Sumová.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

All experiments were approved by the Animal Care and Use Committee of the Institute of Physiology and were in agreement with the Animal Protection Law of the Czech Republic, as well as the European Community Council directives 86/609/EEC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honzlová, P., Novosadová, Z., Houdek, P. et al. Misaligned feeding schedule elicits divergent circadian reorganizations in endo- and exocrine pancreas clocks. Cell. Mol. Life Sci. 79, 318 (2022). https://doi.org/10.1007/s00018-022-04354-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04354-7

Keywords

Navigation