Skip to main content
Log in

Projecting Lipschitz Functions Onto Spaces of Polynomials

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The Banach space \(\mathcal {P}({}^2X)\) of 2-homogeneous polynomials on the Banach space X can be naturally embedded in the Banach space \({\mathrm{Lip}_0}(B_X)\) of real-valued Lipschitz functions on \(B_X\) that vanish at 0. We investigate whether \(\mathcal {P}({}^2X)\) is a complemented subspace of \({\mathrm{Lip}_0}(B_X)\). This line of research can be considered as a polynomial counterpart to a classical result by Joram Lindenstrauss, asserting that \(\mathcal {P}({}^1X)=X^*\) is complemented in \({\mathrm{Lip}_0}(B_X)\) for every Banach space X. Our main result asserts that \(\mathcal {P}({}^2X)\) is not complemented in \({\mathrm{Lip}_0}(B_X)\) for every Banach space X with non-trivial type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We don’t use the standard notation \(\omega \) for a modulus of continuity as it would conflict with \(\omega \in \mathcal {O}_n\).

References

  1. Albiac, F., Ansorena, J.L., Cúth, M., Doucha, M.: Lipschitz algebras and Lipschitz-free spaces over unbounded metric spaces. Int. Math. Res. Not. IMRN rnab193 (2021). https://doi.org/10.1093/imrn/rnab193

  2. Albiac, F., Kalton, N.: Topics in Banach space theory, Graduate Texts in Mathematics, 233. Springer, New York (2006)

  3. Aliaga, R.J., Pernecká, E.: Supports and extreme points in Lipschitz-free spaces. Rev. Mat. Iberoam. 36, 2073–2089 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Puglisi, D.: Linear extension operators between spaces of Lipschitz maps and optimal transport. J. Reine Angew. Math. 764, 1–21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arias, A., Farmer, J.D.: On the structure of tensor products of \(\ell _p\)-spaces. Pacific J. Math. 175, 13–37 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aron, R.M.: An introduction to polynomials on Banach spaces. Extract. Math. 17, 303–329 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Aron, R.M., Berner, P.D.: A Hahn-Banach extension theorem for analytic mappings. Bull. Soc. Math. Fr. 106, 3–24 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aron, R.M., García, D., Maestre, M.: On norm attaining polynomials. Publ. Res. Inst. Math. Sci. 39, 165–172 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aron, R.M., Hájek, P.: Odd degree polynomials on real Banach spaces. Positivity 11, 143–153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aron, R.M., Schottenloher, M.: Compact holomorphic mappings on Banach spaces and the approximation property. J. Funct. Anal. 21, 7–30 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Basso, G.: Computation of maximal projection constants. J. Funct. Anal. 277, 3560–3585 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benyamini, Y., Gordon, Y.: Random factorization of operators between Banach spaces. J. Anal. Math. 39, 45–74 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI (2000)

  14. Candido, L., Cúth, M., Doucha, M.: Isomorphisms between spaces of Lipschitz functions. J. Funct. Anal. 277, 2697–2727 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Candido, L., Kaufmann, P.L.: On the geometry of Banach spaces of the form \({{\rm Lip}_0}(C(K))\). Proc. Am. Math. Soc. 149, 3335–3345 (2021)

    Article  MATH  Google Scholar 

  16. Chevalley, C.: Theory of Lie Groups. I, Princeton Mathematical Series, 8. Princeton University Press, Princeton (1946)

  17. Díaz, J.C., Dineen, S.: Polynomials on stable spaces. Ark. Mat. 36, 87–96 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators, Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge (1995)

  19. Dineen, S., Mujica, J.: Banach spaces of homogeneous polynomials without the approximation property. Czechoslovak Math. J. 65, 367–374 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Zizler, V.: Banach space theory. The basis for linear and nonlinear analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011)

  21. Falco, J., Garcia, D., Jung, M., Maestre, M.: Group invariant separating polynomials on a Banach space. Publ. Mat. 66, 207–233 (2022)

  22. Farmer, J., Johnson, W.B.: Polynomial Schur and polynomial Dunford-Pettis properties. Banach spaces (Mérida, 1992), 95–105, Contemp. Math., 144, Amer. Math. Soc., Providence, RI (1993)

  23. Figiel, T., Tomczak-Jaegermann, N.: Projections onto Hilbertian subspaces of Banach spaces. Israel J. Math. 33, 155–171 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Floret, K.: Natural norms on symmetric tensor products of normed spaces. Proceedings of the Second International Workshop on Functional Analysis (Trier, 1997). Note Mat. 17, 153–188 (1997)

  25. Foucart, S., Lasserre, J.B.: Determining projection constants of univariate polynomial spaces. J. Approx. Theory 235, 74–91 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Foucart, S., Skrzypek, L.: On maximal relative projection constants. J. Math. Anal. Appl. 447, 309–328 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Godefroy, G., Kalton, N.J.: Lipschitz-free Banach spaces. Stud. Math. 159, 121–141 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Godefroy, G.: A survey on Lipschitz-free Banach spaces. Comment. Math. 55, 89–118 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Godefroy, G., Ozawa, N.: Free Banach spaces and the approximation properties. Proc. Am. Math. Soc. 142, 1681–1687 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Görlich, E., Markett, C.: A lower bound for projection operators on \(L_1(-1,1)\). Ark. Mat. 24, 81–92 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Grünbaum, B.: Projection constants. Trans. Am. Math. Soc. 95, 451–465 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hájek, P., Johanis, M.: Smooth Analysis in Banach spaces. De Gruyter, Berlin (2014)

    Book  MATH  Google Scholar 

  33. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. I. Second edition, Grundlehren der Mathematischen Wissenschaften, 115. Springer, Berlin (1979)

  34. Isbell, J.R., Semadeni, Z.: Projection constants and spaces of continuous functions. Trans. Am. Math. Soc. 107, 38–48 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  35. James, R.C.: Nonreflexive spaces of type \(2\). Israel J. Math. 30, 1–13 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jiménez-Vargas, A.: The approximation property for spaces of Lipschitz functions with the bounded weak\(^*\) topology. Rev. Mat. Iberoam. 34, 637–654 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kadets, M.I., Snobar, M.G.: Some functionals over a compact Minkovskii space. Math. Notes 10, 694–696 (1971)

    Article  MATH  Google Scholar 

  38. Kaufmann, P.L.: Products of Lipschitz-free spaces and applications. Stud. Math. 226, 213–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. König, H.: Spaces with large projection constants. Israel J. Math. 50, 181–188 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Korovkin, P.P.: Linear operators and approximation theory. Translated from the Russian ed. (1959) Russian Monographs and Texts on Advanced Mathematics and Physics, Vol. III Gordon and Breach Publishers, Inc., New York; Hindustan Publishing Corp. (India), Delhi (1960)

  41. Lancien, G., Pernecká, E.: Approximation properties and Schauder decompositions in Lipschitz-free spaces. J. Funct. Anal. 264, 2323–2334 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lewicki, G.: Asymptotic estimate of absolute projection constants. Univ. Iagel. Acta Math. 51, 51–60 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Lindenstrauss, J.: Extension of compact operators. Mem. Amer. Math. Soc. 48 (1964)

  44. Lindenstrauss, J.: On nonlinear projections in Banach spaces. Michigan Math. J. 11, 263–287 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lindenstrauss, J.: On complemented subspaces of \(m\). Israel J. Math. 5, 153–156 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. Lecture Notes in Mathematics, 338. Springer, Berlin (1973)

  47. Lozinski, S.: On a class of linear operators. Dokl. Akad. Nauk SSSR 61, 193–196 (1948)

    Google Scholar 

  48. Milman, V.D., Schechtman, G.: Asymptotic theory of finite-dimensional normed spaces. Lecture Notes in Mathematics, 1200. Springer, Berlin (1986)

  49. Odyniec, W., Lewicki, G.: Minimal projections in Banach spaces. Lecture Notes in Mathematics, 1449. Springer, Berlin (1990)

  50. Pełczyński, A.: On weakly compact polynomial operators on B-spaces with Dunford-Pettis property. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11, 371–378 (1963)

    MathSciNet  Google Scholar 

  51. Pernecká, E., Smith, R.J.: The metric approximation property and Lipschitz-free spaces over subsets of \(\mathbb{R}^N\). J. Approx. Theory 199, 29–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pisier, G.: Martingales with values in uniformly convex spaces. Israel J. Math. 20, 326–350 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  53. Positsel’skii, E.D.: Projection constants of symmetric spaces. Math. Notes 15, 430–435 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  54. Rieffel, M.A.: Lipschitz extension constants equal projection constants, Operator theory, operator algebras, and applications, 147–162, Contemp. Math., 414, Amer. Math. Soc., Providence, RI (2006)

  55. Rudin, W.: Projections on invariant subspaces. Proc. Am. Math. Soc. 13, 429–432 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ryan, R.A.: Dunford-Pettis properties. Bull. Acad. Polon. Sci. Se’r. Sci. Math. 27, 373–379 (1979)

    MathSciNet  MATH  Google Scholar 

  57. Themistoclakis, W., Van Barel, M.: Uniform approximation on the sphere by least squares polynomials. Numer. Algorithms 81, 1089–1111 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Themistoclakis, W., Van Barel, M.: Optimal Lebesgue constants for least squares polynomial approximation on the (hyper)sphere. arXiv:1808.03530

  59. Tomczak-Jaegermann, N.: Banach-Mazur distances and finite-dimensional operator ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, 38. Longman Scientific & Technical, Harlow (1989)

  60. Weaver, N.: Lipschitz Algebras. World Scientific Publishing, Hackensack, NJ (2018)

    Book  MATH  Google Scholar 

  61. Weaver, N.: On the unique predual problem for Lipschitz spaces. Math. Proc. Camb. Philos. Soc. 165, 467–473 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, 25. Cambridge University Press, Cambridge (1991)

Download references

Acknowledgements

We wish to thank the anonymous referee for carefully reading our manuscript and for the helpful report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Russo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of P. Hájek was supported in part by OPVVV CAAS CZ.02.1.01/0.0/0.0/16_019/0000778. Research of T. Russo was supported by the GAČR project 20-22230L; RVO: 67985840 and by Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of Istituto Nazionale di Alta Matematica (INdAM), Italy.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hájek, P., Russo, T. Projecting Lipschitz Functions Onto Spaces of Polynomials. Mediterr. J. Math. 19, 190 (2022). https://doi.org/10.1007/s00009-022-02075-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-02075-6

Keywords

Mathematics Subject Classification

Navigation