Skip to main content

Two-Layered Logics for Paraconsistent Probabilities

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2023)

Abstract

We discuss two-layered logics formalising reasoning with paraconsistent probabilities that combine the Łukasiewicz [0, 1]-valued logic with Baaz \(\triangle \) operator and the Belnap–Dunn logic. The first logic (introduced in [7]) formalises a ‘two-valued’ approach where each event \(\phi \) has independent positive and negative measures that stand for, respectively, the likelihoods of \(\phi \) and \(\lnot \phi \). The second logic that we introduce here corresponds to ‘four-valued’ probabilities. There, \(\phi \) is equipped with four measures standing for pure belief, pure disbelief, conflict and uncertainty of an agent in \(\phi \).

We construct faithful embeddings of and into one another and axiomatise using a Hilbert-style calculus. We also establish the decidability of both logics and provide complexity evaluations for them using an expansion of the constraint tableaux calculus for .

The research of Marta Bílková was supported by the grant 22-01137S of the Czech Science Foundation. The research of Sabine Frittella and Daniil Kozhemiachenko was funded by the grant ANR JCJC 2019, project PRELAP (ANR-19-CE48-0006). This research is part of the MOSAIC project financed by the European Union’s Marie Skłodowska-Curie grant No. 101007627.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, when dealing with the classical probability measures we will assume that they are finitely additive.

  2. 2.

    A Hilbert-style calculus for can be found in, e.g. [27], and the axioms for \(\triangle \) in [1]. A concise presentation of a Hilbert-style calculus for is also given in [7].

  3. 3.

    Note that \(\lnot \) does not occur in \((\alpha ^*)^-\) and thus we care only about \(e_1\) and \(v^+\). Furthermore, while n is the number of \(\phi _i\)’s, we can add superfluous modal atoms or variables to make it also the number of variables.

References

  1. Baaz, M.: Infinite-valued Gödel logics with \(0\)-\(1\)-projections and relativizations. In: Gödel’96: Logical Foundations of Mathematics, Computer Science and Physics–Kurt Gödel’s Legacy, Brno, Czech Republic, August 1996, Proceedings, pp. 23–33. Association for Symbolic Logic (1996)

    Google Scholar 

  2. Baldi, P., Cintula, P., Noguera, C.: Classical and fuzzy two-layered modal logics for uncertainty: translations and proof-theory. Int. J. Comput. Intell. Syst. 13, 988–1001 (2020). https://doi.org/10.2991/ijcis.d.200703.001

    Article  Google Scholar 

  3. Belnap, N.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logic, pp. 5–37. Springer, Netherlands (1977). https://doi.org/10.1007/978-94-010-1161-7_2

    Chapter  Google Scholar 

  4. Belnap, N.D.: How a computer should think. In: New Essays on Belnap-Dunn Logic. SL, vol. 418, pp. 35–53. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31136-0_4

    Chapter  Google Scholar 

  5. Bílková, M., Frittella, S., Kozhemiachenko, D.: Constraint tableaux for two-dimensional fuzzy logics. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 20–37. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2_2

    Chapter  Google Scholar 

  6. Bílková, M., Frittella, S., Kozhemiachenko, D., Majer, O.: Qualitative reasoning in a two-layered framework. Int. J. Approximate Reason. 154, 84–108 (2023)

    Article  Google Scholar 

  7. Bilkova, M., Frittella, S., Kozhemiachenko, D., Majer, O., Nazari, S.: Reasoning with belief functions over Belnap-Dunn logic. Ann. Pure Appl. Logic (2022). https://doi.org/10.1016/j.apal.2023.103338

  8. Bílková, M., Frittella, S., Majer, O., Nazari, S.: Belief based on inconsistent information. In: Martins, M., Sedlár, I. (eds.) Dynamic Logic. New Trends and Applications. Lecture Notes in Computer Science, vol. 12569, pp. 68–86. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-65840-3_5

    Chapter  Google Scholar 

  9. Bueno-Soler, J., Carnielli, W.: Paraconsistent probabilities: consistency, contradictions and Bayes’ theorem. Entropy 18(9), 325 (2016)

    Article  Google Scholar 

  10. Běhounek, L., Cintula, P., Hájek, P.: Introduction to mathematical fuzzy logic. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic, Studies in logic, vol. 37, pp. 1–102. College Publications (2011)

    Google Scholar 

  11. Dautović, Š, Doder, D., Ognjanović, Z.: An epistemic probabilistic logic with conditional probabilities. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 279–293. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_19

    Chapter  Google Scholar 

  12. Delgrande, J., Renne, B.: The logic of qualitative probability. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  13. Delgrande, J., Renne, B., Sack, J.: The logic of qualitative probability. Artif. Intell. 275, 457–486 (2019)

    Article  Google Scholar 

  14. Dubois, D.: On ignorance and contradiction considered as truth-values. Logic J. IGPL 16(2), 195–216 (2008)

    Article  Google Scholar 

  15. Dunn, J.M.: Intuitive semantics for first-degree entailments and ‘coupled trees’. Philos. Stud. 29(3), 149–168 (1976)

    Article  Google Scholar 

  16. Dunn, J.: Contradictory information: too much of a good thing. J. Philos. Logic 39, 425–452 (2010)

    Article  Google Scholar 

  17. Fagin, R., Halpern, J.: Uncertainty, belief, and probability. Comput. Intell. 7(3), 160–173 (1991)

    Article  Google Scholar 

  18. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1–2), 78–128 (1990)

    Article  Google Scholar 

  19. Gärdenfors, P.: Qualitative probability as an intensional logic. J. Philos. Logic, 171–185 (1975)

    Google Scholar 

  20. Hähnle, R.: A new translation from deduction into integer programming. In: Calmet, J., Campbell, J.A. (eds.) AISMC 1992. LNCS, vol. 737, pp. 262–275. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57322-4_18

    Chapter  Google Scholar 

  21. Hähnle, R.: Many-valued logic and mixed integer programming. Ann. Math. Artif. Intell. 12(3–4), 231–263 (1994)

    Article  Google Scholar 

  22. Hähnle, R.: Tableaux for many-valued logics. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableaux Methods, pp. 529–580. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0_9

    Chapter  Google Scholar 

  23. Hähnle, R.: Advanced many-valued logics. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, pp. 297–395. Springer, Netherlands (2001). https://doi.org/10.1007/978-94-017-0452-6_5

    Chapter  Google Scholar 

  24. Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4. Springer, Dordrecht (1998)

    Book  Google Scholar 

  25. Hájek, P., Tulipani, S.: Complexity of fuzzy probability logics. Fundamenta Inf. 45(3), 207–213 (2001)

    Google Scholar 

  26. Klein, D., Majer, O., Rafiee Rad, S.: Probabilities with gaps and gluts. J. Philos. Logic 50(5), 1107–1141 (2021). https://doi.org/10.1007/s10992-021-09592-x

    Article  Google Scholar 

  27. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Applied Logic Series, vol. 36, Springer, Cham (2008)

    Google Scholar 

  28. Omori, H., Wansing, H.: 40 years of FDE: an introductory overview. Stud. Logica. 105(6), 1021–1049 (2017). https://doi.org/10.1007/s11225-017-9748-6

    Article  Google Scholar 

  29. Rodrigues, A., Bueno-Soler, J., Carnielli, W.: Measuring evidence: a probabilistic approach to an extension of Belnap-Dunn logic. Synthese 198(S22), 5451–5480 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniil Kozhemiachenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bílková, M., Frittella, S., Kozhemiachenko, D., Majer, O. (2023). Two-Layered Logics for Paraconsistent Probabilities. In: Hansen, H.H., Scedrov, A., de Queiroz, R.J. (eds) Logic, Language, Information, and Computation. WoLLIC 2023. Lecture Notes in Computer Science, vol 13923. Springer, Cham. https://doi.org/10.1007/978-3-031-39784-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39784-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39783-7

  • Online ISBN: 978-3-031-39784-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics