Skip to main content

Structural Completeness and Superintuitionistic Inquisitive Logics

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13923))

  • 204 Accesses

Abstract

In this paper, the notion of structural completeness is explored in the context of a generalized class of superintuitionistic logics involving also systems that are not closed under uniform substitution. We just require that each logic must be closed under D-substitutions assigning to atomic formulas only \(\vee \)-free formulas. For these systems we introduce four different notions of structural completeness and study how they are related. We focus on superintuitionistic inquisitive logics that validate a schema called Split and have the disjunction property. In these logics disjunction can be interpreted in the sense of inquisitive semantics as a question forming operator. It is shown that a logic is structurally complete with respect to D-substitutions if and only if it includes the weakest superintuitionistic inquisitive logic. Various consequences of this result are explored. For example, it is shown that every superintuitionistic inquisitive logic can be characterized by a Kripke model built up from D-substitutions. Additionally, we resolve a conjecture concerning superintuitionistic inquisitive logics due to Miglioli et al..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a formulation of intuitionistic inquisitive logic as a system of natural deduction, see [29].

  2. 2.

    Intuitively, given the inquisitive interpretation of disjunction, D-substitutions assign only declarative sentences to atomic formulas.

  3. 3.

    In [31] these sets of formulas were called superintuitionistic logics\(^{*}\), using the star to indicate that the notion of a logic is used in a non-standard way, since closure under uniform substitution is not generally required.

  4. 4.

    This is related to a fact that was already observed in [28], namely that any inquisitive gsi-logic \(\varLambda \) can be characterized by a canonical Kripke model built up from the Lindenbaum-Tarski algebra of the \(\vee \)-free fragment of \(\varLambda \).

  5. 5.

    The word “consistent” could be omitted here and the equivalence would hold too but in a moment we will need this particular form of the statement that quantifies over consistent formulas.

  6. 6.

    An analogous construction was described in [37] for the standard optimal gsi-logic \(\textsf{ML}\).

References

  1. Bezhanishvili, N., Grilletti, G., Holliday, W.H.: Algebraic and topological semantics for inquisitive logic via choice-free duality. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 35–52. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6_3

    Chapter  Google Scholar 

  2. Ciardelli, I.: Inquisitive semantics and intermediate logics. Master’s thesis, University of Amsterdam, Amsterdam (2009)

    Google Scholar 

  3. Ciardelli, I.: Questions in logic. Ph.D. thesis, University of Amsterdam, Amsterdam (2016)

    Google Scholar 

  4. Ciardelli, I., Groenendijk, J., Roelofsen, F.: Inquisitive Semantics. Oxford University Press, Oxford (2019)

    Google Scholar 

  5. Ciardelli, I., Iemhoff, R., Yang, F.: Questions and dependency in intuitionistic logic. Notre Dame J. Formal Log. 61, 75–115 (2020)

    Article  Google Scholar 

  6. Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Log. 40, 55–94 (2011)

    Article  Google Scholar 

  7. Ciardelli, I., Roelofsen, F.: Inquisitive dynamic epistemic logic. Synthese 192, 1643–1687 (2015)

    Article  Google Scholar 

  8. Cintula, P., Metcalfe, G.: Structural completeness in fuzzy logics. Notre Dame J. Formal Log. 50, 153–182 (2009)

    Article  Google Scholar 

  9. Citkin, A.I.: On structurally complete superintuitionistic logics. Sov. Math. Dokl. 19, 816–819 (1978)

    Google Scholar 

  10. Citkin, A.I.: Hereditarily structurally complete superintuitionistic deductive systems. Stud. Log. 106, 827–856 (2018)

    Article  Google Scholar 

  11. Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Log. 24, 97–106 (1959)

    Article  Google Scholar 

  12. Dzik, D., Wroński, A.: Structural completeness of Gödel’s and Dummett’s propositional calculi. Stud. Log. 32, 69–73 (1973)

    Article  Google Scholar 

  13. Frittella, S., Greco, G., Palmigiano, A., Yang, F.: A multi-type calculus for inquisitive logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 215–233. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8_14

    Chapter  Google Scholar 

  14. Gessel, T.: Action models in inquisitive logic. Synthese 197, 3905–3945 (2020)

    Article  Google Scholar 

  15. Gessel, T.: Questions in two-dimensional logic. Rev. Symb. Log. 15, 859–879 (2022)

    Article  Google Scholar 

  16. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anzeiger Akad. Wissenschaften Wien 69, 65–66 (1932)

    Google Scholar 

  17. Grilletti, G.: Medvedev logic is the logic of finite distributive lattices without top element. In: Fernández-Duque, D., Palmigiano, A., Pinchinat, S. (eds.) AiML 2022. Advances in Modal Logic, vol. 14. College Publications (2022)

    Google Scholar 

  18. Holliday, W.H.: Inquisitive intuitionistic logic. In: Olivetti, N., Verbrugge, R., Negri, S., Sandu, G. (eds.) AiML 2020. Advances in Modal Logic, vol. 13, pp. 329–348. College Publications (2020)

    Google Scholar 

  19. Iemhoff, R.: Consequence relations and admissible rules. J. Philos. Log. 45, 327–348 (2016)

    Article  Google Scholar 

  20. Iemhoff, R., Yang, F.: Structural completeness in propositional logics of dependence. Arch. Math. Log. 55, 955–975 (2016)

    Article  Google Scholar 

  21. Kripke, S.A.: Semantical analysis of intuitionistic logic I. In: Dummett, M.A.E., Crossley, J.N. (eds.) Studies in Logic and the Foundations of Mathematics, vol. 40, pp. 92–130. Elsevier (1965)

    Google Scholar 

  22. Miglioli, P., Moscato, U., Ornaghi, M., Quazza, S., Usberti, G.: Some results on intermediate constructive logics. Notre Dame J. Formal Log. 30, 543–562 (1989)

    Article  Google Scholar 

  23. Minari, P., Wroński, A.: The property (HD) in intermediate logics: a partial solution of a problem of H. Ono. Rep. Math. Log. 22, 21–25 (1988)

    Google Scholar 

  24. Olson, J., Raftery, J.G., van Alten, C.J.: Structural completeness in substructural logics. Log. J. IGPL 16, 455–495 (2008)

    Article  Google Scholar 

  25. Pogorzelski, W.A.: Structural completeness of the propositional calculus. Bull. l’Acad. Polonaise Sci. Sér. Sci. Math. 19, 349–351 (1971)

    Google Scholar 

  26. Prucnal, T.: On the structural completeness of some pure implicational propositional calculi. Stud. Log. 32, 45–50 (1973)

    Article  Google Scholar 

  27. Punčochář, V.: Weak negation in inquisitive semantics. J. Logic Lang. Inform. 23, 47–59 (2015)

    Google Scholar 

  28. Punčochář, V.: A generalization of inquisitive semantics. J. Philos. Log. 45, 399–428 (2016)

    Article  Google Scholar 

  29. Punčochář, V.: Algebras of information states. J. Log. Comput. 27, 1643–1675 (2017)

    Google Scholar 

  30. Punčochář, V.: Substructural inquisitive logics. Rev. Symb. Log. 12, 296–330 (2019)

    Article  Google Scholar 

  31. Punčochář, V.: Inquisitive Heyting algebras. Stud. Log. 109, 995–1017 (2021)

    Article  Google Scholar 

  32. Punčochář, V., Sedlár, I.: Inquisitive propositional dynamic logic. J. Log. Lang. Inform. 30, 91–116 (2021)

    Article  Google Scholar 

  33. Quadrellaro, D.E.: On intermediate inquisitive and dependence logics: an algebraic study. Ann. Pure Appl. Log. 173 (2022). Article 103143

    Google Scholar 

  34. Roelofsen, F.: Algebraic foundations for the semantic treatment of inquisitive content. Synthese 190(1), 79–102 (2013). https://doi.org/10.1007/s11229-013-0282-4

    Article  Google Scholar 

  35. Sano, K.: Goldblatt-Thomason-style characterization for intuitionistic inquisitive logic. In: Olivetti, N., Verbrugge, R., Negri, S., Sandu, G. (eds.) AiML 2020. Advances in Modal Logic, vol. 13, pp. 541–560. College Publications (2020)

    Google Scholar 

  36. Stafford, W.: Proof-theoretic semantics and inquisitive logic. J. Philos. Log. 50, 1199–1229 (2021)

    Article  Google Scholar 

  37. Wojtylak, P.: On a problem of H. Friedman and its solution by T. Prucnal. Rep. Math. Log. 38, 69–86 (2004)

    Google Scholar 

Download references

Acknowledgements

This paper is an outcome of the project Logical Structure of Information Channels, no. 21-23610M, supported by the Czech Science Foundation and carried out at the Institute of Philosophy of the Czech Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Punčochář .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferguson, T., Punčochář, V. (2023). Structural Completeness and Superintuitionistic Inquisitive Logics. In: Hansen, H.H., Scedrov, A., de Queiroz, R.J. (eds) Logic, Language, Information, and Computation. WoLLIC 2023. Lecture Notes in Computer Science, vol 13923. Springer, Cham. https://doi.org/10.1007/978-3-031-39784-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39784-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39783-7

  • Online ISBN: 978-3-031-39784-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics