Skip to main content

On Extreme Computational Complexity of the Einstein Equations

  • Chapter
  • First Online:
Impact of Scientific Computing on Science and Society

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 58))

Abstract

We show how to explicitly express the first of the 10 Einstein partial differential equations to demonstrate their extremely large general complexity. Consequently, it is very difficult to use them, for example, to realistically model the evolution of the Solar system, since their analytical solution even for at least two massive bodies is not known. Significant computational problems associated with their numerical solution are illustrated as well. Thus, we cannot verify whether the Einstein equations describe the motion of two or more bodies sufficiently accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott BP, Abbott R, Abbott TD, Abernathy MR et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Article  MathSciNet  Google Scholar 

  • Brandts J, Korotov S, Křížek M (2020) Simplicial partitions with applications to the finite element method. Springer, Cham

    Book  MATH  Google Scholar 

  • de Sitter W (1917) On the relativity of inertia: remarks concerning Einstein’s latest hypothesis. Proc Kon Ned Acad Wet 19(2):1217–1225

    Google Scholar 

  • Einstein A (1915a) Die Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Jan–Dec:844–847. https://www.biodiversitylibrary.org/item/92536#page/1/mode/1up

  • Einstein A (1915b) Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Jan–Dec:831–839

    Google Scholar 

  • Einstein A (1916) Die Grundlage der allgemeinen Relativitätsteorie. Ann. der Phys. 354(7):769–822

    Article  MATH  Google Scholar 

  • Einstein A (1917) Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preuss. Akad. Wiss. zu Berlin, pp 142–152. English transl. In: The principle of relativity. Dover, New York, 1952

    Google Scholar 

  • Ellis HG (2012) Gravity inside a nonrotating, homogeneous, spherical body. arXiv:1203.4750v2

  • Florides PS (1974) A new interior Schwarzschild solution. Prof Roy Soc Lond A 337(1611):529–535

    Article  MathSciNet  Google Scholar 

  • Gerber P (1898) The spatial and temporal propagation of gravity. J Math Phys 43:93–104

    Google Scholar 

  • Hilbert D (1915) Die Grundlagen der Physik (Erste Mitteilung). Nachr. Ges. Wissen. Göttingen, Math-Phys Klasse 1915:395–408

    MATH  Google Scholar 

  • Interior (2020) Wikipedia, https://en.wikipedia.org/wiki/Interior_Schwarzschild_metric

  • Křížek M (2017) Influence of celestial parameters on Mercury’s perihelion shift. Bulg Astron J 27:41–56

    Google Scholar 

  • Křížek M (2019a) Do Einstein’s equations describe reality well? Neural Netw World 29(4):255–283

    Google Scholar 

  • Křížek M (2019b) Possible distribution of mass inside a black hole. is there any upper nlimit on mass density? Astrophys Space Sci 364:Article 188, 1–5

    Google Scholar 

  • Křížek M, Křížek F (2018) Quantitative properties of the Schwarzschild metric. Publ Astron Soc Bulg 1–10:2018

    MATH  Google Scholar 

  • Křížek M, Somer L (2016) Excessive extrapolations in cosmology. Gravit Cosmol 22(3):270–280

    Article  Google Scholar 

  • Křížek M, Somer L (2018) Neglected gravitational redshift in detections of gravitational waves. In: Křížek M, Dumin YV (eds) Proceedings of the international conference cosmology on small scales 2018: dark matter problem and selected controversies in cosmology. Institute of Mathematics, Czech Academy of Sciences, Prague, pp 173–179

    Google Scholar 

  • McCausland I (1999) Anomalies in the history of relativity. J Sci Explor 13(2):271–290

    Google Scholar 

  • Misner CW, Thorne KS, Wheeler JA (1997) Gravitation, 20th edn. Freeman, New York, W.H

    Google Scholar 

  • Mroué AH, Scheel MA, Szilágyi B, Pfeiffer HP, Boyle M, Hemberger DA, Kidder LE, Lovelace G, Ossokine S, Taylor NW, Zenginoglu A, Buchman LT, Chu T, Foley E, Giesler M, Owen R, Teukolsky SA (2013) Catalog of 174 binary black hole simulations for gravitational wave astronomy. Phys Rev Lett 111:241104

    Article  Google Scholar 

  • Sauer T (1999) The relativity of discovery: Hilbert’s first note on the foundations of physics. Arch Hist Exact Sci 53:529–575

    MathSciNet  MATH  Google Scholar 

  • Schwarzschild K, Über das zulässige Krümmungsmaaß des Raumes. Vierteljahrsschift der Astronomischen Gesellschaft, 35:337–347, (1900) English translation: On the permissible numerical value of the curvature of space. Abraham Zelmanov J 1(64–73):2008

    Google Scholar 

  • Schwarzschild K (1916a) Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Jan-Juni:424–434. English transl.: On the gravitational field of a sphere of incompressible liquid, according to Einstein’s theory. Abraham Zelmanov J 1:20–32

    Google Scholar 

  • Schwarzschild K (1916b) Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Jan–Juni:189–196. English transl.: On the gravitational field of a point-mass, according to Einstein’s theory. Abraham Zelmanov J 1:10–19, 2008

    Google Scholar 

  • Stephani H (2004) Relativity: an introduction to special and general relativity, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vankov AA (2011) Einstein’s paper: “Explanation of the perihelion motion of Mercury from general relativity theory”. General Sci J. Translation of the paper (along with Schwarzschild’s letter to Einstein) by R.A. Rydin with comments by A.A. Vankov

    Google Scholar 

  • Vavryčuk V (2018) Universe opacity and CMB. Mon Not R Astron Soc 478(1):283–301

    Article  Google Scholar 

  • Will CM (2014) The confrontation between general relativity and experiment. Living Rev Relativ 17:4

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author is indebted to J. Brandts, A. Mészáros, L. Somer, and A. Ženíšek for inspiration and valuable suggestions. Supported by grant no. 23-06159S of the Grant Agency of the Czech Republic and RVO 67985840 of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Křížek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Křížek, M. (2023). On Extreme Computational Complexity of the Einstein Equations. In: Neittaanmäki, P., Rantalainen, ML. (eds) Impact of Scientific Computing on Science and Society. Computational Methods in Applied Sciences, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-031-29082-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29082-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29081-7

  • Online ISBN: 978-3-031-29082-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics