Skip to main content

On Some Models in Radiation Hydrodynamics

  • Chapter
  • First Online:
Research in Mathematics of Materials Science

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 31))

  • 408 Accesses

Abstract

The paper is a review on the problem of the compressible radiation hydrodynamics. We focus on the weak solutions of the full viscous system coupled with radiation and their generalization (semi-relativistic case) in a bounded domain \(\varOmega \subset \mathbb {R}^3\). Moreover, we study the strong solutions of the inviscid system with damping term or Euler–Maxwell’s system coupled with radiation in the whole space \(\mathbb {R}^3\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that (2.22) implicitly includes the initial condition

    $$\displaystyle \begin{aligned} \varrho(0, \cdot) = \varrho_0.\end{aligned} $$
  2. 2.

    As the viscous stress contains first derivatives of the velocity u, for (2.23) to make sense, the field u must belong to a certain Sobolev space with respect to the spatial variable. Here, we require that \( {\mathbf u} \in L^2(0,T; W^{1,2}_0 (\varOmega )) \).

  3. 3.

    Let us recall [1] the formula for the entropy of a photon gas

    $$\displaystyle \begin{aligned} s^R=-\frac{2k}{c^3}\int_0^{\infty}\int_{{\mathcal S}^2} \nu^2\left[ n\log n-(n+1)\log(n+1)\right]d{\mathbf \omega} d\nu, \end{aligned} $$
    (2.43)

    where \(n=n(I)=\frac {c^2I}{2h\alpha ^3\nu ^3}\) is the occupation number. Defining the radiative entropy flux

    $$\displaystyle \begin{aligned} {\mathbf q}^R=-\frac{2k}{c^2}\int_0^{\infty}\int_{{\mathcal S}^2} \nu^2\left[ n\log n-(n+1)\log(n+1)\right]{\mathbf \omega}\ d{\mathbf \omega} d\nu, \end{aligned} $$
    (2.44)

    and using the radiative transfer equation, we get the equation

    $$\displaystyle \begin{aligned} \partial_t s^R+\mbox{div}_x {\mathbf q}^R =-\frac{k}{h}\int_0^{\infty}\int_{{\mathcal S}^2} \frac{1}{\nu} \log \frac{n}{n+1}\ S\ d{\mathbf \omega} d\nu=:\varsigma^R. \end{aligned} $$
    (2.45)

    Moreover, \(\log \frac {n(B)}{n(B)+1}=-\frac {h\nu }{k \vartheta }\Big (1-\alpha \frac {\mathbf \omega \cdot \mathbf u}{c}\Big )\) and

    $$\displaystyle \begin{aligned} \alpha=\frac{\sigma_a+\sigma_s}{\sigma_a+2\sigma_s}, \end{aligned} $$
    (2.46)

    For more details, see [18].

  4. 4.
    $$\displaystyle \begin{aligned} A_1:= \left( \begin{array}{cccccc} 0 & \overline{\varrho} & 0 & 0 & 0 & 0\\\ \alpha & 0 & 0 & 0 & \beta & \frac{1}{3\overline{\varrho}}\\\ 0 & 0 & 0 & 0 & 0 & 0\\\ 0 & 0 & 0 & 0 & 0 & 0\\\ 0 & \gamma & 0 & 0 & 0 & 0\\\ 0 & \delta & 0 & 0 & 0 & 0 \end{array} \right) ,\ \ A_2:= \left( \begin{array}{cccccc} 0 & 0 & \overline{\varrho} & 0 & 0 & 0 \\\ 0 & 0 & 0 & 0 & 0 & 0\\\ \alpha & 0 & 0 & 0 & \beta & \frac{1}{3\overline{\varrho}}\\\ 0 & 0 & 0 & 0 & 0 & 0\\\ 0 & 0 & \gamma & 0 & 0 & 0 \\\ 0 & 0 & \delta & 0 & 0 & 0 \end{array} \right) ,\ \end{aligned}$$
    $$\displaystyle \begin{aligned} A_3:= \left( \begin{array}{cccccc} 0 & 0 & 0 & \overline{\varrho} & 0 & 0\\\ 0 & 0 & 0 & 0 & 0 & 0\\\ 0 & 0 & 0 & 0 & 0 & 0\\\ \alpha & 0 & 0 & 0 & \beta & \frac{1}{3\overline{\varrho}}\\\ 0 & 0 & 0 & \gamma & 0 & 0\\\ 0 & 0 & 0 & \delta & 0 & 0 \end{array} \right), \end{aligned}$$

    and

    $$\displaystyle \begin{aligned} D:= \left( \begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 0\\\ 0 & 0 & 0 & 0 & 0 & 0\\\ 0 & 0 & 0 & 0 & 0 & 0\\\ 0 & 0 & 0 & 0 & 0 & 0\\\ 0 & 0 & 0 & 0 & \mu & 0\\\ 0 & 0 & 0 & 0 & 0 & \nu \end{array} \right) ,\ \ B:= \left( \begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 0\\\ 0 & \nu & 0 & 0 & 0 & 0\\\ 0 & 0 & \nu & 0 & 0 & 0\\\ 0 & 0 & 0 & \nu & 0 & 0\\\ 0 & 0 & 0 & 0 & \zeta & -\eta\\\ 0 & 0 & 0 & 0 & -\pi & \sigma_a \end{array} \right), \end{aligned}$$
  5. 5.
    $$\displaystyle \begin{aligned} \alpha= \frac{\overline{p}_{\varrho}}{\overline{\varrho}},\quad \beta=\frac{\overline{p}_{\vartheta}}{\overline{\varrho}},\quad \gamma=\frac{\overline{\vartheta}\overline{p}_{\vartheta}}{\overline{\varrho}\overline{C}_v},\quad \delta=\frac{4}{3}\overline{E}_r,\quad \mu= \frac{\kappa}{\overline{\varrho}\overline{C}_v},\end{aligned}$$
    $$\displaystyle \begin{aligned} \tau=\frac{1}{3\sigma_s},\quad \zeta= \frac{4a\sigma_a\overline{\vartheta}^3}{\overline{\varrho}\overline{C}_v},\quad \eta=\frac{\sigma_a}{\overline{\varrho}\overline{C}_v},\quad \pi=4a\sigma_a\overline{\vartheta}^3. \end{aligned}$$

References

  1. R. Balian, From Microphysics to Macrophysics. Methods and Applications of Statistical Physics, vol. II (Springer, Berlin, Heidelberg, New York, 1992)

    Google Scholar 

  2. C. Bardos, F. Golse, B. Perthame, R. Sentis, The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation. J. Funct. Anal. 77, 434–460 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. X. Blanc, B. Ducomet, Weak and strong solutions of equations of compressible magnetohydrodynamics, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (Springer, Cham, 2018), pp. 2869–2925

    Google Scholar 

  4. X. Blanc, B. Ducomet, Š. Nečasová, On some singular limits in damped radiation hydrodynamics. J. Hyperbolic Differ. Equ. 13(2), 249–271 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. X. Blanc, B. Ducomet, Š. Nečasová, Global existence of a radiative Euler system coupled to an electromagnetic field. Adv. Nonlinear Anal. 8(1), 1158–1170 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Beauchard, E. Zuazua, Large time asymptotics for partially dissipative hyperbolic systems. Arch. Rational Mech. Anal. 199, 177–227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Berthon, C. Buet, J.-F Coulombel, B. Desprès, J. Dubois, T. Goudon, J.E. Morel, R. Turpault, Mathematical Models and Numerical Methods for Radiative Transfer. Panoramas et Synthèses, vol. 28 (Société Mathématique de France, Paris, 2009)

    Google Scholar 

  8. N. Bournaveas, B. Perthame, Averages over spheres for kinetic transport equations; hyperbolic Sobolev spaces and Strichartz inequalities. J. Math. Pures Appl. 80(9), 517–534 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Buet, B. Després, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. J. Quant. Spectroscopy Rad. Transf. 85, 385–480 (2004)

    Article  Google Scholar 

  10. S. Chandrasekhar, Radiative Transfer (Dover Publications, New York, 1960)

    MATH  Google Scholar 

  11. N. Chaudhuri, E. Feireisl, Navier-Stokes-Fourier system with Dirichlet boundary conditions. arXiv:2106.05315

    Google Scholar 

  12. B. Dubroca, J.-L. Feugeas, Etude théorique et numérique d’une hiérarchie de modéles aux moments pour le transfert radiatif. C. R. Acad. Sci. Paris 329, 915–920 (1999)

    Article  MATH  Google Scholar 

  13. B. Ducomet, E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars. Commun. Math. Phys. 266, 595–629 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Ducomet, E. Feireisl, Š. Nečasová, On a model of radiation hydrodynamics. Ann. I. H. Poincaré-AN 28, 797–812 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Ducomet, Š. Nečasová, M. Pokorný, Milan, M.-A. Rodríguez-Bellido, Derivation of the Navier-Stokes-Poisson system with radiation for an accretion disk. J. Math. Fluid Mech. 20(2), 697–719 (2018)

    Google Scholar 

  16. B. Ducomet, Š. Nečasová, Low Mach number limit for a model of radiative flow, J. Evol. Eq. 14(2), 357–385 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Ducomet, Š. Nečasová, Diffusion limits in a model of radiative flow. Annali dell Universita di Ferrara. VII Sci. Mat. 61(1), 17–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Ducomet, Š. Nečasová, Singular limits in a model of radiative flow. J. Math. Fluid Mech. 17(2), 341–380 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Dubroca, M. Seaïd, J.-L. Feugeas, A consistent approach for the coupling of radiation and hydrodynamics at low Mach number. J. Comput. Phys. 225, 1039–1065 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Birkhauser, Basel, 2009)

    Book  MATH  Google Scholar 

  21. E. Feireisl, On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53, 1707–1740 (2004)

    Article  MathSciNet  Google Scholar 

  22. E. Feireisl, A. Novotný, Navier-Stokes-Fourier system with general boundary conditions. Commun. Math. Phys. 386(2), 975–1010 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Feng, S. Wang, S. Kawashima, Global existence and asymptotic decay of solutions of the non-isentropic Euler-Maxwell system. Math. Models Methods Appl. Sci. 24, 2851–2884 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Y-H. Feng, S. Wang, X. Li, Stability of non-constant steady-state solutions for non-isentropic Euler-Maxwell system with a temperature damping term. Math. Meth. Appl. Sci. 39, 2514–2528 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Golse, B. Perthame, Generalized solutions of the radiative transfer equations in a singular case. Commun. Math. Phys. 106(2), 211–239 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Golse, P.L. Lions, B. Perthame, R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 16, 110–125 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Golse, B. Perthame, R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport. C. R. Acad. Sci. Paris 301, 341–344 (1985)

    MathSciNet  MATH  Google Scholar 

  28. J.W. Jerome, The Cauchy problem for compressible hydrodynamic-Maxwell systems: a local theory for smooth solutions. Differ. Int. Equa. 16, 1345–1368 (2003)

    MathSciNet  MATH  Google Scholar 

  29. P. Jiang, D. Wang, Formation of singularities of solutions of the radiative transfer equations in a singular case. Nonlinearity 23(4), 809–821 (2010)

    Article  MathSciNet  Google Scholar 

  30. P. Jiang, D. Wang, Global weak solutions to the Euler-Boltzmann equations in radiation hydrodynamics. Quart. Appl. Math. 70(1), 25–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis, Kyoto University, 1984

    Google Scholar 

  32. O. Kreml, Š. Nečasová, M. Pokorný, On the steady equations for compressible radiative gas. Z. Angew. Math. Phys. 64(3), 539–571 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Lin, T. Goudon, Global existence of the equilibrium diffusion model in radiative hydrodynamics. Chin. Ann. Math. 32B, 549–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Lin, Mathematical analysis of radiative transfer models, PhD Thesis, 2007

    Google Scholar 

  35. C. Lin, J.F. Coulombel, T. Goudon, Shock profiles for non-equilibrium radiative gases. Physica D 218, 83–94 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. R.B. Lowrie, J.E. Morel, J.A. Hittinger, The coupling of radiation and hydrodynamics. Astrophys. J. 521, 432–450 (1999)

    Article  Google Scholar 

  37. D. Levermore, Relating Eddington factors to flux limiters. J. Quant. Spectrosc. Rad. Transf. 31, 149–160 (1984)

    Article  Google Scholar 

  38. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys. 83, 1021–1076 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Mihalas, Stellar Atmospheres (W.H. Freeman and Cie, San Francisco, 1978)

    Google Scholar 

  40. B. Mihalas, B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics (Dover Publications, Dover, 1984)

    MATH  Google Scholar 

  41. A. Munier, R. Weaver, Radiation transfer in the fluid frame: a covariant formulation Part I: Radiation hydrodynamics. Comput. Phys. Rep. 3, 125–164 (1986)

    Article  Google Scholar 

  42. A. Munier, R. Weaver. Radiation transfer in the fluid frame: a covariant formulation Part II: Radiation transfer equation, Computer Phys. Rep. 3, 165–208 (1986)

    Article  Google Scholar 

  43. A. Novotný, Lecture notes on the Navier-Stokes-Fourier system: weak solutions, relative entropy inequality, weak strong uniqueness, in Topics on Compressible Navier-Stokes Equations. Panor. Synthèses, vol. 50 (Soc. Math. France, Paris, 2016), pp. 1–42

    Google Scholar 

  44. E. Feireisl, Concepts of solutions in the thermodynamics of compressible fluids, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (Springer, Cham, 2018), pp. 1353–1379

    Google Scholar 

  45. G.C. Pomraning, Radiation Hydrodynamics (Dover Publications, New York, 2005)

    Google Scholar 

  46. L. Poul, On dynamics of fluids in astrophysics. J. Evol. Equ. 9, 37–66 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. J.F. Ripoll, B. Dubroca, G. Duffa, Modelling radiative mean absorption coefficients. Combust. Theory Modell. 5, 261–274 (2001)

    Article  MATH  Google Scholar 

  48. D. Serre, Systèmes de lois de conservation I, II. Diderot Editeur (Arts et Sciences, Paris, New-York, Amsterdam, 1996)

    Google Scholar 

  49. D. Serre, Systems of conservation laws with dissipation, in Lecture Notes SISSA (2007)

    Google Scholar 

  50. Y. Shizuta, S. Kawashima, Systems of equation of hyperbolic-parabolic type with application to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  51. Z. Tan, Y. Wang, Large time behavior of solutions to the compressible non-isentropic Euler-Maxwell system in \(\mathbb {R}^3\). Nonlinear Anal. Real World Appl. 15, 187–204 (2014)

    Google Scholar 

  52. I. Teleaga, M. Seaïd, I. Gasser, A. Klar, J. Struckmeier, Radiation models for thermal flows at low Mach number. J. Comput. Phys. 215, 506–525 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Y. Ueda, S. Wang, S. Kawashima, Dissipative structure of the regularity-loss type and time asymptotic decay of solutions for the Euler-Maxwell system. SIAM J. Math. Anal. 44, 2002–2017 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Y. Ueda, S. Kawashima, Decay properties of regularity-loss type for the Euler-Maxwell system. Methods Appl. Anal. 18, 245–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Xu, J. Xiong, Global existence of classical solutions of full Euler-Maxwell equations. J. Math. Anal. Appl. 402, 545–557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. X.Zhong, J. Jiang, Local existence and finite-time blow up in multidimensional radiation hydrodynamics. J. Math.Fluid Mech. 9, 543–564 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Š.N. were supported by the Czech Science Foundation grant GA19-04243S and by the programme of the Academy of Sciences of the Czech Republic, Institutional Research Plan 67985840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Nečasová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blanc, X., Ducomet, B., Nečasová, Š. (2022). On Some Models in Radiation Hydrodynamics. In: Español, M.I., Lewicka, M., Scardia, L., Schlömerkemper, A. (eds) Research in Mathematics of Materials Science. Association for Women in Mathematics Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-031-04496-0_4

Download citation

Publish with us

Policies and ethics