Skip to main content

Nonparametric Estimations and the Diffeological Fisher Metric

  • Conference paper
  • First Online:
Geometric Structures of Statistical Physics, Information Geometry, and Learning (SPIGL 2020)

Abstract

In this paper, first, we survey the concept of diffeological Fisher metric and its naturality, using functorial language of probabilistic morphisms, and slightly extending Lê’s theory in [Le2020] to include weakly \(C^k\)-diffeological statistical models. Then we introduce the resulting notions of the diffeological Fisher distance, the diffeological Hausdorff–Jeffrey measure and explain their role in classical and Bayesian nonparametric estimation problems in statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper we shall consider only (possibly weakly) Fréchet differentiable mappings and we shall omit “Fréchet” in the remaining part of this paper.

References

  1. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information geometry and sufficient statistics. Probab. Theory Relat. Fields 162, 327–364 (2015)

    Article  MathSciNet  Google Scholar 

  2. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry. Springer, Cham (2017)

    Book  Google Scholar 

  3. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Parametrized measure models. Bernoulli 24, 1692–1725 (2018)

    Article  MathSciNet  Google Scholar 

  4. Amari, S.: The Finsler geometry of families nonregular distributions. Translated into English by S. V. Sabau in 2002 (1984)

    Google Scholar 

  5. Amari, S.: Information Geometry and Its Applications. Applied Mathematical Sciences, vol. 194. Springer, Berlin (2016)

    Book  Google Scholar 

  6. Ambrisio, L., Tilli, P.: Topics in Analysis on Metric Spaces. Oxford University Press, Oxford (2004)

    Google Scholar 

  7. Barbaresco, F., Gay-Balmaz, F.: Lie group cohomology and (multi)symplectic integrators: new geometric tools for Lie group machine learning based on Souriau geometric statistical mechanics. Entropy 22, 498 (2020). https://doi.org/10.3390/e22050498

    Article  MathSciNet  Google Scholar 

  8. Bogachev, V.I.: Differentiable Measures and the Malliavin Calculus. AMS, Providence (2010)

    Book  Google Scholar 

  9. Bogachev, V.I.: Weak convergence of measures, Mathematical Surveys and Monographs, vol. 234. American Mathematical Society, Providence (2018)

    Book  Google Scholar 

  10. Borovkov, A.A.: Mathematical Statistics. Gordon and Breach Science Publishers, Amsterdam (1998)

    MATH  Google Scholar 

  11. Faden, A.M.: The existence of regular conditional probabilities: necessary and sufficient conditions. Ann. Probab. 13, 288–298 (1985)

    Article  MathSciNet  Google Scholar 

  12. Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

    Google Scholar 

  13. Friedrich, T.: Die Fisher-Information und symplektische Strukturen. Math. Nachr. 153, 273–296 (1991)

    Article  MathSciNet  Google Scholar 

  14. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.) Categorical Aspects of Topology and Analysis. Lecture Notes in Mathematics, vol. 915, pp. 68–85. Springer, Heidelberg (1982)

    Google Scholar 

  15. Chentsov, N.: Statistical Decision Rules and Optimal Inference. Nauka, Moscow, Russia (1972). English translation in: Translation of Math. Monograph, vol. 53. American Mathematical Society, Providence, RI, USA, 1982

    Google Scholar 

  16. Iglesias-Zemmour, P.: Diffeology. American Mathematical Society, Providence (2013)

    Book  Google Scholar 

  17. Jeffrey, H.: An invariant form for the prior probability in estimation problems. Proc. Ro. Soc. Lond. Ser. Math. Phys. Sci. 186, 453–461 (1946)

    Google Scholar 

  18. Jost, J., Lê, H.V., Tran, T.D.: Probabilistic morphisms and Bayesian nonparametrics. Eur. Phys. J. Plus 136, 441 (2021). https://doi.org/10.1140/epjp/s13360-021-01427-7

  19. Jordan, M.I.: What are the open problems in Bayesian statistics? ISBA Bull. 18, 1–4 (2011)

    Google Scholar 

  20. Kaliaj, S.B.: Differentiability and weak differentiability. Mediterr. J. Math. 13, 2801–2811 (2016). https://doi.org/10.1007/s00009-015-0656-6

    Article  MathSciNet  MATH  Google Scholar 

  21. Lawvere, W.F.: The category of probabilistic mappings (1962). Unpublished. https://ncatlab.org/nlab/files/lawvereprobability1962.pdf

  22. Lê, H.V.: The uniqueness of the Fisher metric as information metric. Ann. Inst. Stat. Math. 69, 879–896 (2017). arXiv:math/1306.1465

    Article  MathSciNet  Google Scholar 

  23. Lê, H.V.: Diffeological statistical models, the Fisher metric and probabilistic mappings. Mathematics 8(2), 167 (2020). https://doi.org/10.3390/math8020167

  24. Morgan, F.: Geometric Measure Theory A Beginner’s Guide, 4th edn. Elsevier, Amsterdam (2009)

    MATH  Google Scholar 

  25. McCullagh, P.: What is a statistical model. Ann. Stat. 30, 1225–1310 (2002)

    Article  MathSciNet  Google Scholar 

  26. Morse, N., Sacksteder, R.: Statistical isomorphism. Ann. Math. Stat. 37, 203–214 (1966)

    Article  MathSciNet  Google Scholar 

  27. Neveu, J.: Bases Mathématiques du Calcul de Probabilités, deuxième edition, Masson, Paris (1970)

    Google Scholar 

  28. Pflug, G.: Optimization of Stochastic Models. Kluwer Academic, Boston (1996)

    Book  Google Scholar 

  29. Pflug, G.: Derivatives of probability measures - concepts and applications to the optimization of stochastic systems. In: Lecture Notes in Control and Information Science, vol. 103, pp. 252–274. Springer, Heidelberg (1988)

    Google Scholar 

  30. Souriau, J.-M.: Groupes différentiels. In: Lecture Notes in Mathematics, vol. 836, pp. 91–128. Springer, Heidelberg (1980)

    Google Scholar 

  31. Watanabe, S.: Algebraic Geometry and Statistical Learning Theory. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

Download references

Acknowledgement

HVL would like to thank Professor Frédéric Barbaresco and Professor Frank Nielsen for their invitation to the Les Houches conference in July 2020 where a part of the results in this paper has been reported. She is grateful to Professor Sun-ichi Amari who discussed with her the phenomena of degeneration and explosion of the Fisher metric and sent her a copy of his paper [Amari1984] several years ago. The authors would like to thank the referee for helpful comments which considerably improve the exposition of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hông Vân Lê .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lê, H.V., Tuzhilin, A.A. (2021). Nonparametric Estimations and the Diffeological Fisher Metric. In: Barbaresco, F., Nielsen, F. (eds) Geometric Structures of Statistical Physics, Information Geometry, and Learning. SPIGL 2020. Springer Proceedings in Mathematics & Statistics, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-030-77957-3_7

Download citation

Publish with us

Policies and ethics