Skip to main content

Compressible Navier-Stokes System on a Moving Domain in the Lp − Lq Framework

  • Chapter
  • First Online:

Part of the book series: Advances in Mathematical Fluid Mechanics ((LNMFM))

Abstract

We prove the local well-posedness for the barotropic compressible Navier-Stokes system on a moving domain, a motion of which is determined by a given vector field V, in a maximal L p − L q regularity framework. Under additional smallness assumptions on the data we show that our solution exists globally in time and satisfies a decay estimate. In particular, for the global well-posedness we do not require exponential decay or smallness of V in L p(L q). However, we require exponential decay and smallness of its derivatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. A. Adams, J. F. Fournier, Sobolev Spaces, Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, (2003).

    Google Scholar 

  2. S. Doboszczak. Relative entropy and a weak-strong uniqueness principle for the compressible Navier-Stokes equations on moving domains Appl. Math. Lett., 57:60–68, 2016

    Google Scholar 

  3. Y. Enomoto, Y.Shibata On the R-sectoriality and the Initial Boundary Value Problem for the Viscous Compressible Fluid Flow Funkcialaj Ekvacioj, 56 (2013), 441–505

    Google Scholar 

  4. E. Feireisl. Compressible Navier-Stokes equations with a non - monotone pressure law. J. Differential Equations, 184:97–108, 2002.

    Article  MathSciNet  Google Scholar 

  5. E. Feireisl. Dynamics of viscous compressible fluids. Oxford University Press, Oxford, 2004.

    MATH  Google Scholar 

  6. E. Feireisl. On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J., 53:1707–1740, 2004.

    Article  MathSciNet  Google Scholar 

  7. R. Farwig, H. Sohr. Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan, 46 (4), 607–643, 1994.

    Article  MathSciNet  Google Scholar 

  8. E. Feireisl, B.J. Jin, and A. Novotný. Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14(4):717–730, 2012.

    Article  MathSciNet  Google Scholar 

  9. E. Feireisl, J. Neustupa, and J. Stebel. Convergence of a Brinkman-type penalization for compressible fluid flows. J. Differential Equations, 250(1):596–606, 2011.

    Article  MathSciNet  Google Scholar 

  10. E. Feireisl, O. Kreml, Š. Nečasová, J. Neustupa, J. Stebel. Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time dependent domains. J. Differential Equations 254(1):125–140, 2013.

    Article  MathSciNet  Google Scholar 

  11. E. Feireisl, A. Novotný, and H. Petzeltová. On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech., 3:358–392, 2001.

    Article  MathSciNet  Google Scholar 

  12. E. Feireisl, A. Novotný and Y. Sun. Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids. Indiana Univ. Math. J., 60(2):611–631, 2011.

    Article  MathSciNet  Google Scholar 

  13. D. Hoff. Local solutions of a compressible flow problem with Navier boundary conditions in general three-dimensional domains. SIAM J. Math. Anal., 44(2):633–650, 2012.

    Article  MathSciNet  Google Scholar 

  14. T. Hytönen, J. van Neerven, M. Veraar, L. Weis. Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory. A Series of Modern Surveys in Mathematics, vol. 63. Springer, Cham, 2016.

    Google Scholar 

  15. T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag Berlin Heidelberg, 1995.

    Book  Google Scholar 

  16. O. Kreml, V. Mácha, Š. Nečasová, A. Wróblewska-Kamińska. Weak solutions to the full Navier-Stokes-Fourier system with slip boundary conditions in time dependent domain Journal de Mathématiques Pures et Appliquées, 9, 109 : 67–92, 2018.

    Google Scholar 

  17. O. Kreml, V. Mácha, Š. Nečasová, A. Wróblewska-Kamińska. Flow of heat conducting fluid in a time dependent domain. Z. Angew. Math. Phys., 69, 5, Art. 119, 2018.

    Google Scholar 

  18. O. Kreml, Š. Nečasová, T. Piasecki. Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains Proc. Roy. Soc. Edinburgh Sect. A, 150(5):2255–2300, 2020. Edinburgh A, in press, https://doi.org/10.1017/prm.2018.165.

  19. P.-L. Lions. Mathematical topics in fluid dynamics, Vol.2, Compressible models. Oxford Science Publication, Oxford, 1998.

    Google Scholar 

  20. M. Murata On a maximal L p − L q approach to the compressible viscous fluid flow with slip boundary condition Nonlinear Analysis 106 (2014), 86–109

    Google Scholar 

  21. A. Matsumura, T. Nishida. The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Kyoto Univ., 20:67–104, 1980.

    MathSciNet  MATH  Google Scholar 

  22. A. Matsumura, T. Nishida. Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm. Math. Phys., 89:445–464, 1983.

    Article  MathSciNet  Google Scholar 

  23. P.B. Mucha, W.M. Zaja̧czkowski On local-in-time existence for the Dirichlet problem for equations of compressible viscous fluids. Ann. Polon. Math. 78 (2002), no. 3, 227–239.

    Google Scholar 

  24. P.B. Mucha, W.M. Zaja̧czkowski On a Lp-estimate for the linearized compressible Navier-Stokes equations with the Dirichlet boundary conditions. J. Differential Equations 186 (2002), no. 2, 377–393.

    Google Scholar 

  25. P.B. Mucha, W.M. Zaja̧czkowski Global existence of solutions of the Dirichlet problem for the compressible Navier-Stokes equations. ZAMM Z. Angew. Math. Mech. 84 (2004), no. 6, 417–424.

    Google Scholar 

  26. T. Piasecki, Y. Shibata, E. Zatorska On strong dynamics of compressible two-component mixture flow SIAM J. Math. Anal. 51 (2019), no. 4, 2793–2849

    Google Scholar 

  27. T. Piasecki, Y. Shibata, E. Zatorska. On the isothermal compressible multi-component mixture flow: the local existence and maximal L p − L q regularity of solutions. Nonlinear Analysis 189 (2019) 111571

    Google Scholar 

  28. Y. Shibata. On the global well-posedness of some free boundary problem for a compressible barotropic viscous fluid flow. Recent advances in partial differential equations and applications, 341–356, Contemp. Math., 666, Amer. Math. Soc., Providence, RI, 2016

    Google Scholar 

  29. Y. Shibata, M. Murata On the global well-posedness for the compressible Navier-Stokes equations with slip boundary condition. J. Differential Equations 260 (2016),

    Google Scholar 

  30. Y. Shibata, K. Tanaka. On a resolvent problem for the linearized system from the dynamical system describing the compressible viscous fluid motion. Math. Mech. Appl. Sci. 27, 1579–1606, 2004.

    Article  MathSciNet  Google Scholar 

  31. H. Tanabe. Functional analytic methods for partial differential equations. Monographs and textbooks in pure and applied mathematics, Vol 204, Marchel Dekker, Inc. New York, Basel, 1997.

    Google Scholar 

  32. A. Valli. An existence theorem for compressible viscous fluids. Ann. Math. Pura Appl. (IV), 130:197–213, 1982. Ann. Math. Pura Appl. (IV), 132:399–400, 1982.

    Google Scholar 

  33. A. Valli. Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann. Sc. Norm. Super. Pisa (IV) 10:607–647, 1983.

    MathSciNet  MATH  Google Scholar 

  34. L. Weis. Operator-valued Fourier multiplier theorems and maximal L p-regularity. Math. Ann. 319, 735–758, 2001.

    Google Scholar 

  35. W.M. Zaja̧czkowski. On nonstationary motion of a compressible barotropic viscous fluid with boundary slip condition. J. Appl. Anal. 4(2):167–204, 1998.

    Google Scholar 

  36. W.M. Zaja̧czkowski. On nonstationary motion of a compressible barotropic viscous capillary fluid bounded by a free surface. SIAM J. Math. Anal. 25 no. 1, 1–84, 1994.

    Google Scholar 

  37. W.M. Zaja̧czkowski. On nonstationary motion of a compressible barotropic viscous fluid bounded by a free surface. Dissertationes Math. (Rozprawy Mat.) 324 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Kreml .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kreml, O., Nečasová, Š., Piasecki, T. (2021). Compressible Navier-Stokes System on a Moving Domain in the Lp − Lq Framework. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds) Waves in Flows. Advances in Mathematical Fluid Mechanics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-68144-9_5

Download citation

Publish with us

Policies and ethics