Skip to main content

Cardiac Mitochondria and Ischemia/Reperfusion Injury—Sex Differences

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 21))

Abstract

It is now widely accepted that function of cardiac mitochondria is sex-dependent. Female mitochondria better utilize lipids and exhibit higher oxidative capacity in comparison with males. Our results have revealed that female cardiac mitochondria are more resistant to calcium–induced swelling as compared with the male myocardium; this suggests their better protection against mitochondrial permeability transition pore (PTP) opening. It seems to us that sex-dependent specificity of the PTP function is not the result of differences in its protein composition, since the male and female rat heart contains comparable amount of ATP synthase and its regulatory protein cyclophilinD (CypD). The higher hypoxic tolerance of the female cardiac mitochondria thus rather reflects sex differences in the regulation of PTP function, probably together with regulation of CypD by post-translational modifications. The precise knowledge of the composition of the PTP complex and regulation of pore opening are essential conditions for the development of new drugs targeting the function of PTP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ventura-Clapier, Moulin M, Piquereau J, et al (2017) Mitochondria: a central target for sex differences in pathologies. Clin Sci 131: 803–822

    Google Scholar 

  2. Fernandez-Vizarra E, Enriqez JA, Perez-Martos A et al (2011) Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion 11:207–213

    Article  CAS  PubMed  Google Scholar 

  3. Mejia EM, Nguyen H, Hatch GM (2014) Mammalian cardiolipin biosynthesis. Chem Phys Lipids 179:11–16

    Article  CAS  PubMed  Google Scholar 

  4. Ren J, Taegtmeyer H (2015) Too much or not enough of a good thing-the Janus faces of autophagy in cardiac fuel and protein homeostasis. J Mol Cell Cardiol 84:223–226

    Article  CAS  PubMed  Google Scholar 

  5. Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haworth RA, Hunter DR (1979) The Ca 2+-induced membrane transition in mitochondria. II. Nature of the Ca 2+ trigger site. Arch Biochem Biophys 195:460–467

    Google Scholar 

  7. Rasola A, Bernardi P (2015) The mitochondrial permeability transition pore and its adaptive responses in tumor cells. Cell Calcium 58:18–26

    Article  CAS  PubMed  Google Scholar 

  8. Bonora M, Bononi A, De Marchi E et al (2013) Role of the c subunit of the Fo ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giorgio V, von Stockum S, Antoniel M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Javadov S, Jang S, Parodi-Rullan R et al (2017) Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection ? Cell Mol Life Sci 74:2795–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galat A (1993) Peptidylproline cis-trans-isomerases: immunophilins. Eur J Biochem 216:689–707

    Article  CAS  PubMed  Google Scholar 

  12. Gutierrez-Aguilar M, Baines CP (1850) Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore. Biochim Biophys Acta 2041–2047:2015

    Google Scholar 

  13. Velarde MC (2014) Mitochondrial and sex steroid hormone crosstalk during aging. Longev Healthspan 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chretien D, Benit P, Huyung-Ho H et al (2018) Mitochondria are physiologically maintained at close to 50o C. PLOS Biol 16:1–17

    Article  CAS  Google Scholar 

  15. Bulichev A, Kramar L, Drahota Z, Lindberg O (1972) Exp Cell Res 72:169–187

    Article  Google Scholar 

  16. Jansky L (1973) Non-shivering thermogenesis and its thermoregulatory significance. Biol Rev 48:85–132

    Article  CAS  PubMed  Google Scholar 

  17. Flatmark T, Pedersen JI (1975) Brown adipose tissue mitochondria. Biochim Biophys Acta 416:53–103

    Article  CAS  PubMed  Google Scholar 

  18. Palmer JW, Tandler B, Hoppel CL (1986) Heterogenous response of subsarcolemmal heart mitochondria to calcium. Am J Physiol 250:H741–H748

    CAS  PubMed  Google Scholar 

  19. Ostadal B, Drahota Z, Houstek J et al (2019) Developmental and sex differences in cardiac tolerance to ischemia-reperfusion injury: the role of mitochondria. Can J Physiol Pharmacol 97:808–814

    Article  CAS  PubMed  Google Scholar 

  20. Colom B, Oliver J, Roca P, Garcia-Palmer FJ (2007) Caloric restriction and gender modulate cardiac muscle mitochondrial H2 O2 production and oxidative damage. Cardiovasc Res 74:456–465

    Article  CAS  PubMed  Google Scholar 

  21. Laghranha CJ, Deschamps A, Aponte A et al (2010) Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females. Circ Res 106:1681–1691

    Article  CAS  Google Scholar 

  22. Moulin M, Piquereau J, Mateo P et al (2015) Sexual dimorphism of doxorubicin-mediated cardiotoxicity: potential role of energy metabolism remodeling. Circ Heart Fail 8:98–108

    Article  CAS  PubMed  Google Scholar 

  23. Ribeiro RF Jr, Ronconi KS, Morra EA et al (2016) Sex differences in regulation of spatially distinct cardiac mitochondrial subpopulations. Mol Cell Biochem 419:41–51

    Article  CAS  PubMed  Google Scholar 

  24. Murphy E, Steenbergen C (2007) Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res 75:478–486

    Article  CAS  PubMed  Google Scholar 

  25. Stirone C, Duckles SP, Krause DN, Procaccio V (2005) Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol Pharmacol 68:959–965

    Article  CAS  PubMed  Google Scholar 

  26. Morkuniene R, Arandarcikaite O, Ivanoviene L, Borutaite V (2010) Estradiol-induced protection against ischemia-induced heart mitochondrial damage and caspase activation is mediated by protein kinase G. Biochim Biophys Acta 1797:1012–1017

    Article  CAS  PubMed  Google Scholar 

  27. Pavon N, Martinez-Abundis E, Hernandez L, et al (2012) Sexual hormones: effects on cardiac and mitochondrial activity after ischemia-reperfusion in adult rats. Gender difference. J Steroid Biochem Mol Biol 132:135–146

    Google Scholar 

  28. Arieli Y, Gursahani H, Eaton MM (2004) Gender modulation of Ca 2+ uptake in cardiac mitochondria. J Mol Cell Cardiol 37:507–513

    Article  CAS  PubMed  Google Scholar 

  29. Williams GS, Boyman L, Lederer WJ (2015) Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 78:35–45

    Article  CAS  PubMed  Google Scholar 

  30. Chweih H, Castilho RF, Figueira TR (2015) Tissue and sex specificities in Ca 2+ handling by isolated mitochondria in conditioning avoiding the permeability transition. Exp Physiol 100:1073–1092

    Article  CAS  PubMed  Google Scholar 

  31. Vijay V, Han T, Moland CL, et al (2015) Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages. PloS One 10: e0117047

    Google Scholar 

  32. Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38:841–860

    Article  CAS  PubMed  Google Scholar 

  33. Bernardi P. The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4: 95. Doi: 10.3389

    Google Scholar 

  34. Drahota Z, Endlicher R, Stankova P et al (2012) Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves. J Bioenerg Biomembr 44:309–315

    Article  CAS  PubMed  Google Scholar 

  35. Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141

    Article  CAS  PubMed  Google Scholar 

  36. Endlicher R, Drahota Z, Cervinkova Z (2019) Modification of calcium retention capacity of rat liver mitochondria by phosphate and tert-butylhydroperoxide. Physiol Res 68:59–65

    Article  CAS  PubMed  Google Scholar 

  37. Di Lisa F, Bernardi P (1998) Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem 184:379–391

    Article  PubMed  Google Scholar 

  38. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion—A target for cardioprotection. Cardiovasc Res 61:372–385

    Article  CAS  PubMed  Google Scholar 

  39. Bernardi P, Krauskopf A, Basso E et al (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099

    Article  CAS  PubMed  Google Scholar 

  40. Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34:232–237

    Article  CAS  PubMed  Google Scholar 

  41. Morciano G, Giorgi C, Bonora M et al (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 78:142–153

    Article  CAS  PubMed  Google Scholar 

  42. Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ (2015) The mitochondrial permeability transition pore and its role in mitochondrial ischemia reperfusion injury. J Mol Cell Cardiol 78:23–34

    Article  CAS  PubMed  Google Scholar 

  43. Kuznetsov AV, Margreiter R (2009) Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci 10:1911–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hollander JM, Thapa D, Shepherd DL (2014) Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Physiol Heart Circ Physiol 307:H1–H14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alam MR, Baetz D, Ovize M (2015) Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J Mol Cell Cardiol 78:80–89

    Article  CAS  PubMed  Google Scholar 

  46. Cung TT, Morel O, Cayla G et al (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–1031

    Article  CAS  PubMed  Google Scholar 

  47. Mewton N, Cung TT, Morel O et al (2015) Rationale and design of the Cyclosporine to ImpRove Clinical oUtcome in ST-elevation myocardial infarction patients (the CIRCUS trial). Am Heart J 169:758–766

    Article  CAS  PubMed  Google Scholar 

  48. Giorgio V, Bisetto E, Soriano ME et al (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284:33982–33988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Milerova M, Drahota Z, Chytilova A et al (2016) Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol Cell Biochem 412:147–154

    Article  CAS  PubMed  Google Scholar 

  50. Milerova M, Charvatova Z, Skarka L et al (2010) Neonatal cardiac mitochondria and ischemia/reperfusion injury. Mol Cell Biochem 335:147–153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Czech Science Foundation No 19-04790Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohuslav Ostadal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drahota, Z., Hlavackova, M., Ostadal, B. (2020). Cardiac Mitochondria and Ischemia/Reperfusion Injury—Sex Differences. In: Ostadal, B., Dhalla, N.S. (eds) Sex Differences in Heart Disease. Advances in Biochemistry in Health and Disease, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-58677-5_15

Download citation

Publish with us

Policies and ethics