DOI - Mendel University Press

DOI identifiers

ISBN: 978-80-7509-926-6 | ISBN online: 978-80-7509-927-3 | DOI: 10.11118/978-80-7509-927-3

Ekologie lesa

Jak se les mění a funguje

Pavel Rotter (ed.), Luboš Purchart (ed.)

This book introduces the reader to the forest as a complex adaptive system. Compared to the traditional ecosystem view, biotic interactions between members of this complex network are more emphasized. This requires explaining some of the basic concepts and phenomena of relationship networks of forest ecosystems. In these networks, some species, or groups of species, stand out as keystone species or as the so-called ecosystem engineers. These species, groups of species, or even whole fragments of the network of relationships are represented at a specific level through findings that illuminate the functioning of the forest as a whole. The publication is also unique in its emphasis on a functional perspective and understanding which species, places or processes underpin the existence of the forest as a whole. The aim of the book is to place all the forest ecology findings presented in a framework that is highly relevant and crucial for the Central European context, and to show how this knowledge can contribute to better forest management and forest adaptation to climate change. In following this path towards better understanding of forests, the reader is first introduced to how different perspectives on forests have shaped different ways of using them and why it is more essential than ever for forest management to be based on ecological foundations. The evolution of the forest as a spatio-temporal structure is then presented through information about the evolution of forests in the Holocene, the dynamics of natural temperate forests and the influence of one of the main drivers of this dynamics - disturbances - on forest structure and biodiversity. With this in mind, the book´s focus shifts to networks - trophic networks and cascades - as well as to physical connectivity in mycorrhizal networks as fundamental phenomena shaping the forest ecosystem. This broader perspective transitions into a detailed presentation of the roles which individual groups of organisms, keystone species and ecosystem engineers play in the functioning of the whole. From these details, emergent ecosystem properties - nutrient cycle and ecosystem stability – become apparent both at the level of the whole system or its distinct subsystems. We are living in turbulent times as a result of global climate change, therefore understanding the nature of ecological stability and other aspects of adaptation is becoming essential for the preservation of production forests and their ecosystem services which are crucial for our society. This issue is raised almost at the end of the book. It concludes with a synthesis chapter summarizing the presented concept of forest ecology and outlining the possible applications of their findings.

Keywords: forest adaptation, biodiversity, disturbance, ecological stability, climate change, nutrient cycle, trophic relationships

1. edition, Published: 2023, online: 2023, publisher: Mendelova univerzita v Brně



ERRATA:

Rub titulní strany

V příkladu citace na rubu titulní strany je chybně uveden rok vydání publikace, správný rok je 2023, nikoliv 2022.

Příklad citace ve správné podobě: Rotter P., Purchart L. (eds.) 2023: Ekologie lesa. Jak se les mění a funguje. Brno: Mendelova univerzita v Brně. DOI: https://doi.org/10.11118/978-80-7509-927-3b

Str. 46, obr. 2.2.1

V obrázku 2.2.1 na straně 46 chybí žlutě a zelené šrafované pole, na které se text v popisku obrázku odkazuje.

Str. 87, obr. 2.3.11

V záhlaví obrázku 2.3.11 na straně 87 je uveden chybný rozsah letopočtu 1972-1976. Správně je 1972-1996.

Str. 458, obr. 6.1.5

V obrázku 6.1.5 na straně 458 jsou na ose y uvedeny chybné číselné hodnoty.

Attachments

Download fileSprávná podoba obrázku 6.1.5 ze strany 458

6.1.5-oprava.jpg
File size: 399.57 kB

Download fileSprávná podoba obrázku 2.2.1 ze strany 46

2.2.1-OPRAVA.jpg
File size: 533.84 kB

References

  1. Cajander A.K. (1927): Pojem a význam lesních typů. Překlad originálu z roku1909 J. Konšelem. Praha.
  2. Gayer K. (1886): Der gemischte Wald, seine Begründung und Pflege, insbesondere durch Horst und Gruppenwirtschaft. P. Parey, Berlin. Go to original source...
  3. Konšel J. (1931): Stručný nástin tvorby a pěstění lesů v biologickém ponětí. - Matice lesnická, Písek.
  4. Messier Ch. et al. (2014): Managing forests as complex adaptive systems. Building resilience to the challenge of global change. Routledge, London, New York.
  5. Möller A. (1922): Der Dauerwaldgedanke, sein Sinn und seine Bedeutung. Springer, Berlin. Go to original source...
  6. Puettmann K.J. et al. (2009): A critique of silviculture. Managing for Complexity. Island Press, Washington, Covelo, London.
  7. Bleicher S.S. (2017): The landscape of fear conceptual framework: definition and review of current applications and misuses. PeerJ, 5: e3772. Go to original source...
  8. Fanta J., Petřík P. (eds.) (2021): Jiné klima - jiný les. Academia, Praha.
  9. Fanta J. (2007): Lesy a lesnictví ve střední Evropě. Série šesti článků v časopise Živa č. 1/2007 - 6/2007.
  10. Fanta J. (2021): Jak dál se smrkem v českých lesích. Živa, 2: LX-LXIII.
  11. Favero A. et al. (2018): Global cost estimates of forest climate mitigation with albedo: a new integrative policy approach. Environmental Research Letters, 13: 125002. Go to original source...
  12. Chen H. et al. (2020): Large uncertainty on forest area change in the early 21st century among widely used global land cover datasets. Remote Sensing, 12: 3502. Go to original source...
  13. Konvička M. et al. (2006): Ohrožený hmyz nížinných lesů: Ochrana a management. Sagittaria, Olomouc.
  14. Ložek V. (2007): Zrcadlo minulosti. Česká a slovenská příroda v kvartéru. Dokořán, Praha.
  15. Ložek V. (2011): Po stopách pravěkých dějů. O silách, které vytvářely naši krajinu. Dokořán, Praha.
  16. Machar I. et al. (2017): Modelling of climate conditions in forest vegetation zones as a support tool for forest management strategy in European beech dominated forests. Forests, 8: 82. Go to original source...
  17. Machar I. et al. (2018): Environmental modelling of forest vegetation zones as a support tool for sustainable management of central European spruce forests. Journal of Landscape Ecology, 11(3): 45-63. Go to original source...
  18. Mikusinski G. et al. (2018): Ecology and conservation of forest birds. Cambridge University Press, Cambridge.
  19. Piao S. et al. (2019): Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth and Environment, 1 :1-14. Go to original source...
  20. Pokorný P. (2011): Neklidné časy. Kapitoly ze společných dějin přírody a lidí. Dokořán, Praha.
  21. Pokorný P., Storch D. (eds.) (2020): Antropocén. Academia, Praha.
  22. Prach K. et al. (2009): Ekologie a rozšíření biomů na Zemi. Scientia, Praha.
  23. Prach J., Kopecký M. (2018): Landscape-scale vegetation homogenization in Central European sub-montane forests over the past 50 years. Applied Vegetation Science, 21(3): 373-384. Go to original source...
  24. Rotter, Pavel. Stabilita ekologických systémů. Masarykova univerzita, 2013.
  25. Slach T. (ed.) (2016): Starobylé výmladkové lesy. Mendelova univerzita v Brně.
  26. Svoboda J.A. (2016): Dolní Věstonice - Pavlov. Academia, Praha. Go to original source...
  27. Vera F.M.W. (2000): Grazing ecology and forest history. CABI Publishing, Wallingford. Go to original source...
  28. Abrego N. et al. (2015): Implications of reserve size and forest connectivity for the conservation of wood-inhabiting fungi in Europe. Biological Conservation, 191: 469-477. Go to original source...
  29. Aszalós R. et al. (2022): Natural disturbance regimes as a guide for sustainable forest management in Europe. Ecological Applications, 32(8): e2596. Go to original source...
  30. Bače R. et al. (2015): Management mrtvého dřeva v hospodářských lesích. Certifikovaná metodika, Lesnický průvodce 6/2016, VÚLHM, v.v.i., Strnady.
  31. Bouget C. et al. (2012): Effect of deadwood position on saproxylic beetles in temperate forests and conservation interest of oak snags. Insect Conservation and Diversity, 5(4): 264-278. Go to original source...
  32. Bütler R. et al. (2013): Habitat trees: key elements for forest biodiversity. Pp. 84-91. In: Kraus D., Krumm F. (eds.): Integrative approaches as an opportunity for the conservation of forest biodiversity. European Forest Institute.
  33. Christensen M. et al. (2005): Dead wood in European beech (Fagus sylvatica) forest reserves. Forest Ecology and Management: 210: 267-282. Go to original source...
  34. Clavel J. et al. (2010): Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and in the Environment, 9(4): 222-228. Go to original source...
  35. D´Amato A.W. et al. (2021): Building on the last "new" thing: exploring the compatibility of ecological and adaptation silviculture. Canadian Journal of Forest Research, 51(2): 172-180. Go to original source...
  36. Doerfler I. et al. (2017): Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. Forest Ecology and Management, 400: 607-620. Go to original source...
  37. Eckelt A. et al. (2018): Primeval forest relict beetles of Central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. Journal of Insect Conservation, 22: 15-28. Go to original source...
  38. Estreguil C. et al. (2013): Connectivity of Natura 2000 Forest Sites - executive report. European Commission, Joint Research Centre Institute for Environment and Sustainability.
  39. European Union (2021): New EU Forest Strategy for 2030. Communication from the commission to the European Parliament, the council, the European economic and social committee and the committee of the regions. Published in Brussels.
  40. Franklin J. et al. (2000): Threads of continuity: ecosystem disturbances, biological legacies and ecosystem recovery. Conservation Biology in Practice, 1: 8-16. Go to original source...
  41. Franklin J. et al. (2007): Natural disturbance and stand development principles for ecological forestry. General Technical Report NRS-19: U.S. Department of Agriculture, Forest Service, Northern Research Station. Go to original source...
  42. Gratzer G. et al. (2022): Does fine scale spatiotemporal variation in seed rain translate into plant population structure? Oikos, (2022): 1-12. Go to original source...
  43. Gossner M. et al. (2013): Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conservation Biology, 27(3): 605-614. Go to original source...
  44. Giesecke T. et al. (2017): Patterns and dynamics of European vegetation change over the last 15,000 years. Journal of Biogeography, 44: 1441-1456. Go to original source...
  45. Hagge J. et al. (2019): Congruent patterns of functional diversity in saproxylic beetles and fungi across European beech forests. Journal of Biogeography, 46(5): 1054-1065. Go to original source...
  46. Harmon M.E. et al. (1989): Tree seedlings on logs in Picea-Tsuga forests of Oregon and Washington. Ecology, 70(1): 48-59. Go to original source...
  47. Hilmers T. et al. (2018): Biodiversity along temperate forest succession. Journal of Applied Ecology, 55(6): 2756-2766. Go to original source...
  48. Hunter M.L. (1999): Maintaining Biodiversity in Forest Ecosystems. Cambridge University Press. Go to original source...
  49. Juutilainen K. et al. (2017): The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. Forest Ecology and Management, 313: 283-291. Go to original source...
  50. Kraus D. et al. (2013): Integrative approaches as an opportunity for the conservation of forest biodiversity. European Forest Institute.
  51. Lachat T. et al. (2013): Deadwood: quantitative and qualitative requirements for the conservation of saproxylic biodiversity. Pp. 92-102. In: Kraus D., Krumm F. (eds.): Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity. European Forest Institute.
  52. McDowell N.G. et al. (2020): Pervasive shifts in forest dynamics in a changing world. Science, 368(6494): eaaz9463. Go to original source...
  53. Mergner U. et al. (2020): Learning from nature: Integrative forest management in Ebrach, Germany. Pp. 196-213. In: Krum F. et al. (eds.): How to balance forestry and biodiversity conservation? A view across Europe. Swiss Federal Institute for Forest, Snow and Landscape Research WSL.
  54. Müller J. et al. (2010): Learning from a ''benign neglect strategy" in a national park: Response of saproxylic beetles to dead wood accumulation. Biological Conservation, 143: 2559-2569. Go to original source...
  55. Müller J. et al. (2010): A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. European Journal of Forest Research, 129: 981-992. Go to original source...
  56. Muys B. et al. (2022): Forest Biodiversity in Europe. From Science to Policy. European Forest Institute. Go to original source...
  57. Palik B.J. et al. (2020): Ecological Silviculture Foundations and Applications. Waveland Press, Inc.
  58. Patacca M. et al. (2022): Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biology 29: 1359-1376. Go to original source...
  59. Picket S.T.A. et al. (1985): The Ecology of Natural Disturbance and Patch Dynamics. Academic Press.
  60. Rock J. et al. (2008): Estimating decomposition rate constants for European tree species from literature sources. European Journal of Forest Research, 127(4): 301-313. Go to original source...
  61. Rybicki J. et al. (2020): Habitat fragmentation and species diversity in competitive communities. Ecology Letters, 23: 506-517. Go to original source...
  62. Seidl R. et al. (2020): Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems. Ecography, 43(7): 967-978. Go to original source...
  63. Seidl R. et al. (2011): Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 17(9): 2842-2852. Go to original source...
  64. Senf C. et al. (2021): Mapping the forest disturbance regimes of Europe. Nature Sustainability, 4: 63-70. Go to original source...
  65. Shorohova E. et al. (2014): Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests. Forest Ecology and Management, 315: 173-184. Go to original source...
  66. Šamonil P. et al. (2014): Disturbances can control fine-scale pedodiversity in old-growth forests: is the soil evolution theory disturbed as well? Biogeosciences, 11(20): 5889-5905. Go to original source...
  67. Taeroe A. et al. (2019): Recovery of temperate and boreal forests after windthrow and the impacts of salvage logging. A quantitative review. Forest Ecology and Management, 446: 304-316. Go to original source...
  68. Vítková L. et al. (2018): Deadwood management in Central European forests: Key considerations for practical implementation. Forest Ecology and Management, 429: 394-405. Go to original source...
  69. Adam D. et al. (2011): Boubínský prales. Sada specializovaných map s odborným obsahem. VÚKOZ, v.v.i., Brno.
  70. Baldrian P. et al. (2016): Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecology, 23: 109-122. Go to original source...
  71. Buongiorno J. et al. (1994): Tree size diversity and economic returns in uneven-aged forest stands. Forest Science, 40(1): 83-103.
  72. Burton C.D. (1997): A gap-based approach for development of silvicultural systems to address ecosystem management objectives. Forest Ecology and Management, 99: 337-354. Go to original source...
  73. Duelli P. et al. (1997): Migration in spruce bark beetles (Ips typograpus L.) and the efficiency of pheromone traps. Journal of Applied Entomology, 121: 297-303. Go to original source...
  74. Franklin A.J. et al. (2000): Recapture of Ips typographus L. (Col. Scolytidae) with attractants of low release rates: localized dispersion and environmental influences. Agricultural and Forest Entomology, 2: 259-270. Go to original source...
  75. Gossner M.M. et al. (2013): Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conservation Biology, 27(3): 605-614. Go to original source...
  76. Holec J. et al. (2020): Macrofungi on large decaying spruce trunks in a Central European old-growth forest: what factors affect their species richness and composition? Mycological Progress, 19: 53-66. Go to original source...
  77. Homola P. (2019): Lze využít samoprořeďování buku v pěstování lesů? Diplomová práce, Mendelova univerzita v Brně.
  78. Janik D. et al. (2018): Where have all the tree diameters grown? Patterns in Fagus sylvatica L. diameter growth on their run to the upper canopy. Ecosphere, 9(12): 1-19. Go to original source...
  79. Janik D. et al. (2016): Tree spatial patterns of Fagus sylvatica expansion over 37 years. Forest Ecology and Management, 375: 134-145. Go to original source...
  80. Kausrud K. et al. (2012): Population dynamics in changing environments: the case of an eruptive forest pest species. Biological Reviews, 87: 34-51. Go to original source...
  81. Korpeľ Š. (1989): Pralesy Slovenska. Veda, Bratislava.
  82. Korpeľ Š. (1995): Die Urwälder der Westkarpaten. Gustav Fischer Verlag, Stuttgart.
  83. Král K. et al. (2010): Developmental phases in a temperate natural spruce-fir-beech forest: determination by a supervised classification method. European Journal of Forest Research, 129: 339-351. Go to original source...
  84. Král K. et al. (2014): Patch mosaic of developmental stages in Central European natural forests along an elevation and vegetation gradient. Forest Ecology and Management, 330: 17-28. Go to original source...
  85. Král K. et al. (2014): Spatial variability of general stand characteristics in central European beech-dominated natural stands - Effects of scale. Forest Ecology and Management, 328: 353-364. Go to original source...
  86. Král K. et al. (2018): How cyclical and predictable are Central European temperate forest dynamics in terms of developmental phases? Journal of Vegetation Science, 29(1): 84-97. Go to original source...
  87. Lepinay C. et al. (2021): Successional development of fungal communities associated with decomposing deadwood in a natural mixed temperate forest. Journal of Fungi, 7(6): 412. Go to original source...
  88. Liebermann M. et al. (1989): Forests are not just Swiss cheese: canopy stereogeometry of non-gaps in tropical forests. Ecology, 70(3): 550-552. Go to original source...
  89. Mayer H. (1987): Urwaldreste, Naturwaldreste und schützenswerte Naturwälder in Österreich. Universität für Bodenkultur, Wien.
  90. Míchal I. (1983): Dynamika přírodního lesa I. - VI. Živa, XXXI (LXIX): 8-13, 48-53, 85-88, 128-133, 163-168, 233-238.
  91. Míchal I., Petříček V. (eds.) (1999): Péče o chráněná území, II. Lesní společenstva. AOPK ČR, Praha.
  92. Müller J., Büttler R. (2010): A review of habitat tresholds for dead wood: a baseline for management recommendations in european forests. European Journal of Jorest Research, 128: 981-992. Go to original source...
  93. Pícha J. (2012): Expanze buku v NPR Žofínský prales v období 1847-2011. Diplomová práce. Mendelova univerzita v Brně.
  94. Přívětivý T. et al. (2016): How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)? Forest Ecology and Management, 381: 177-187. Go to original source...
  95. Přívětivý T. et al. (2018): Decay dynamics of Abies alba and Picea abies deadwood in relation to environemental conditions. Forest Ecology and Management, 422: 250-259. Go to original source...
  96. Schütz J.P. (2002): Silvicultural tools to develop irregular and diverse forest structures. Forestry, 75: 327-337. Go to original source...
  97. Schütz J.P. et al. (2016): Comparing close-to-nature silviculture with processes in pristine forests: lessons from Central Europe. Annals of Forest Science, 73: 911-921. Go to original source...
  98. Šamonil P. et al. (2013) Individual-based approach to the detection of disturbance history through spatial scales in a natural beech-dominated forest. Journal of Vegetation Science, 24(6): 1167-1184. Go to original source...
  99. Šamonil P. et al. (2018): Biomechanical effect of trees in an old-growth temperate forest. Earth Surface Processes and Landforms, 43: 1063-1072. Go to original source...
  100. Vrška T. et al. (2009): European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians - a developmental cycle or a linear trend induced by man? Forest Ecology and Management, 258: 347-356. Go to original source...
  101. Vrška T. et al. (2015): Doporučené formy porostních směsí a způsoby jejich obhospodařování v ochranných pásmech zvláště chráněných území ponechaných samovolnému vývoji v 5.-7. lesním vegetačním stupni. Certifikovaná metodika MZe. Lesnický průvodce 11/2015. VÚLHM, v.v.i., Strnady.
  102. Vrška T. et al. (2015): Deadwood residence time in alluvial hardwood temperate forests - A key aspect of biodiversity conservation. Forest Ecology and Management, 357: 33-41. Go to original source...
  103. Watt A. (1947): Pattern and process in the plant community. The Journal of Ecology, 35(1/2): 1-22. Go to original source...
  104. Wermelinger B. (2004): Ecology and management of the spruce bark beetle Ips typographus - a review of recent research. Forest Ecology and Management, 202: 67-82. Go to original source...
  105. Ammon W. (2009): Výběrný princip v lesním hospodářství. Závěry ze 40-ti let švýcarské praxe. Lesnická práce, Kostelec nad Černými lesy.
  106. Aszalós R. et al. (2021): Natural disturbance regimes as a guide for sustainable forest management in Europe. Ecological Applications, 32(5): e2596. Go to original source...
  107. Axelsson R. et al. (2007): Natural forest and cultural woodland with continuous tree cover in Sweden: How much remains and how is it managed? Scandinavian Journal of Forest Research, 22 (6): 545-558. Go to original source...
  108. Bače R., Svoboda M. (2016): Management mrtvého dřeva v hospodářských lesích. Certifikovaná metodika. Výzkumný ústav lesního hospodářství a myslivosti.
  109. Bobiec A. et al. (2005): The afterlife of a tree. WWF Poland, Warsaw.
  110. Čížek L. et al. (2016): Metodika péče o druhově bohaté (světlé) lesy. Certifikovaná metodika. Biologické centrum AV ČR, Entomologický ústav, České Budějovice.
  111. Čížek L. et al. (2020): Ořezávané stromy - zapomenuté dědictví, historie, současnost a význam v ochraně přírody. Agentura Gevak.
  112. D´Amato A.W., Palik B.J. (2021): Building on the last "new" thing: exploring the compatibility of ecological and adaptation silviculture. Canadian Journal of Forest Research, 51(2): 172-180. Go to original source...
  113. Dieler J. et al. (2017): Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. European Journal of Forest Research, 136(4): 739-766. Go to original source...
  114. Dobrovolný L. (2018): Modelový les v podmínkách Školního lesního podniku Masarykův les Křtiny. Pp. 15-26. In: Nepasečné hospodaření jako součást řešení problému klimatické změny. Sborník příspěvků z odborného semináře, Křtiny.
  115. Duflot R. et al. (2022): Management diversity begets biodiversity in production forest landscapes. Biological Conservation, 268: 109514. Go to original source...
  116. Duncker P.S. et al. (2012): Classification of forest management approaches: a new conceptual framework and its applicability to European forestry. Ecology and Society, 17(4): 51. Go to original source...
  117. Emmer I.M. et al. (1998): Reversing borealization as a means to restore biodiversity in Central-European mountain forests - An example from the Krkonose Mountains, Czech Republic. Biodiversity and Conservation, 7(2): 229-247. Go to original source...
  118. Felton A. et al. (2010): Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecology and Management, 260(6): 939-947. Go to original source...
  119. Ferkl V. (2020): Může být nepasečný - výběrný způsob alternativou pro naše lesy? Pro Silva Bohemica, Brno.
  120. Franklin J.F. et al. (1997): Alternative silvicultural approaches to timber harvesting: Variable retention harvest systems. Pp. 111-139. In: Kohm K.A., Franklin J.F. (eds.): Creating a forestry for the 21st century. Island Press, Washington, DC.
  121. Fedrowitz K. et al. (2014): Can retention forestry help conserve biodiversity? A meta-analysis. Journal of Applied Ecology, 51: 1669-1679. Go to original source...
  122. Grove S.J. (2002): Saproxylic insect ecology and the sustainable management of forests. Annual reviews of Ecology and Systematics, 33: 1-23. Go to original source...
  123. Gustafsson L. et al. (2012): Retention forestry to maintain multifunctional forests: A world perspective. BioScience, 62(7): 633-645. Go to original source...
  124. Hengeveld G. M. et al. (2012): A forest management map of European forests. Ecology and Society, 17(4): 53. Go to original source...
  125. Hilmers T. et al. (2018): Biodiversity along temperate forest succession. Journal of Applied Ecology, 55(6): 2756-2766. Go to original source...
  126. Hunter M.L. (1999): Maintaining Biodiversity in Forest Ecosystems. Cambridge University Press. Go to original source...
  127. Hurt V. (2011): Pěstování středního lesa a převody na střední les. Certifikovaná metodika. Mendelova univerzita v Brně.
  128. Jankovský L. et al. (2006): Analýza postupů ponechávání dřeva k zetlení z hlediska vlivu na biologickou rozmanitost. Ministerstvo životního prostředí ČR.
  129. Jaureguiberry P. et al. (2022): The direct drivers of recent global anthropogenic biodiversity loss. Science Advances, 8: eabm9982. Go to original source...
  130. Kjučukov P. (2022): Lesnický management a ochrana biodiverzity. Disertační práce. Česká zemědělská univerzita v Praze.
  131. Kjučukov P. et al. (2021): Ekologické lesnictví - vhodná cesta k rozmanitému lesu. Pp. 97-103. In: Petřík P., Fanta J. (eds.): Jiné klima - jiný les. Academia, Praha.
  132. Knott R. et al. (2011): Pěstování nízkého lesa a převody na nízký les. Certifikovaná metodika. Mendelova univerzita v Brně.
  133. Košulič M. (2010): Cesta k přírodě blízkému hospodářskému lesu. 1. vyd. FSC ČR, Brno.
  134. Kozák D. et al. (2018): Profile of tree-related microhabitats in European primary beech-dominated forests. Forest Ecology and Management, 429: 363-374. Go to original source...
  135. Kraus D. et al. (2016a): Catalogue of tree microhabitats - Reference field list. Integrate+ Technical Paper.
  136. Kraus D. et al. (2016b): Seznam stromových mikrobiotopů - Terénní příručka. Integrate+ Technický článek.
  137. Kraus D., Krumm F. (2013): Integrative approaches as an opportunity for the conservation of forest biodiversity. European Forest Institute.
  138. Krása A. (2015): Ochrana saproxylického hmyzu a opatření na jeho podporu. Metodiky Agentury ochrany přírody a krajiny ČR.
  139. Krumm F. et al. (eds) (2020): How to balance forestry and biodiversity conservation - A view across Europe. European Forest Institute (EFI), Swiss Federal Institute for Forest, Birmensdorf.
  140. Kuuluvainen T. (2009): Forest management and biodiversity conservation based on natural ecosystem dynamics in Northern Europe: The complexity challenge. Ambio, 38(6): 309-315. Go to original source...
  141. Lindenmayer D. (2006): Salvage harvesting - past lessons and future issues. Forestry Chronicles, 82(1): 48-53. Go to original source...
  142. Machar I. (2014): The coppice forest management in the ecological networks in central Europe. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. SGEM, 2(3): 455-460. Go to original source...
  143. Mason F., Zapponi L. (2015): The forest biodiversity artery: towards forest management for saproxylic conservation. iForest Biogeosciences and Forestry. 9(2): 205-216. Go to original source...
  144. Mason W.L. et al. (2022): Continuous cover forestry in Europe: usage and the knowledge gaps and challenges to wider adoption. Forestry, 95(1):1-12. Go to original source...
  145. Mergner U., Kraus D. (2020): Learning from nature: Integrative forest management in Ebrach, Germany. Pp. 196-213. In: How to balance forestry and biodiversity conservation? A view across Europe. Swiss Federal Institute for Forest.
  146. Mikoláš M. et al. (2021): Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proceedings of the Royal Society B, 88: 20211631. Go to original source...
  147. Möller A. (1922): Der Dauerwaldgedanke. Sein Sinn und seine Beduetung. J. Springer, Berlin. Go to original source...
  148. Mori A.S., Kitagawa R. (2014): Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: A global meta-analysis. Biological Conservation, 175: 65-73. Go to original source...
  149. Muys B. et al. (2022): Forest biodiversity in Europe, from science to policy. European Forest Institute. Go to original source...
  150. Nagel T.A. et al. (2017): Evaluating the influence of integrative forest management on old-growth habitat structures in a temperate forest region. Biological Conservation, 216: 101-107. Go to original source...
  151. Nolet P. et al. (2018): Comparing the effects of even- and uneven-aged silviculture on ecological diversity and processes: A review. Ecology and Evolution, 8(2): 1217-1226. Go to original source...
  152. Paillet Y.et al. (2010): biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conservation Biology, 24(1): 101-112. Go to original source...
  153. Palik B., D´Amato A. (2017): Ecological forestry: Much more than retention harvesting. Journal of Forestry, 115(1): 51-53. Go to original source...
  154. Palik B.J. (2020): Ecological silviculture foundations and applications. Waveland Press, Inc.
  155. Poleno Z. (1997): Trvale udržitelné obhospodařování lesů. Ministerstvo zemědělství ČR.
  156. Pötzelsberger E. et al. (2021): Forest biodiversity in the spotlight - what drives change? European Forest Institute.
  157. Pukkala T., von Gadow K. (eds.) (2012): Continuous cover forestry. Springer, Dordrecht. Go to original source...
  158. Pukkala T. (2016): Plenterwald, Dauerwald or clearcut? Forest Policy and Economics, 62: 125-134. Go to original source...
  159. Puletti N. et al. (2017): Deadwood distribution in European forests. Journal of Maps, 13(2): 733-736. Go to original source...
  160. Remeš J. (2018): Development and present state of close-to-nature silviculture. Journal of Landscape Ecology, 11(3): 17-32. Go to original source...
  161. Rotter P. et al. (2021): Lesníkův průvodce neklidnými časy. Lesnická práce, s.r.o., Kostelec nad Černými lesy, VÚKOZ.
  162. Schall P. et al. (2018): The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. Journal of Applied Ecology, 55(1): 267-278. Go to original source...
  163. Scherzinger W. (1996): Naturschutz im Wald: Qualitätsziele einer dynamischen Waldentwicklung. Praktischer Naturschutz. Verlag Eugen Ulmer, Stuttgart.
  164. Schulze E.-D. et al. (2007): Temperate and boreal old-growth forests: how do their growth dynamics and biodiversity differ from young stands and managed forests? Pp. 343-366. In: Wirth C. et al. (eds.): Old-growth forests: function, fate and value. Springer, Berlin, Heidelberg. Go to original source...
  165. Schulze E.D. et al. (2016): A review on plant diversity and forest management of European beech forests. European Journal of Forest Research, 135(1): 51-67. Go to original source...
  166. Schulze E.D. (2018): Effects of forest management on biodiversity in temperate deciduous forests: An overview based on Central European beech forests. Journal for Nature Conservation, 43: 213-226. Go to original source...
  167. Seymour R.S., Hunter M.L. (1992): New forestry in eastern spruce-fir forests: Principles and applications to Maine. College of Forest Resources, University of Maine.
  168. Simončič T. et al. (2015): A conceptual framework for characterizing forest areas with high societal values: Experiences from the Pacific Northwest of USA and Central Europe. Environmental Management, 56(1): 127-143. Go to original source...
  169. Spiecker H. (2003): Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone. Journal of Environmental Management, 67: 55-65. Go to original source...
  170. Šamonil P. et al. (2014): Disturbances can control fine-scale pedodiversity in old-growth forests: is the soil evolution theory disturbed as well? Biogeosciences, 11: 5889-5905. Go to original source...
  171. Šebková B. et al. (2012): Interaction between tree species populations and windthrow dynamics in natural beech-dominated forest, Czech Republic. Forest Ecology and Management, 280: 9-19. Go to original source...
  172. Vítková L. et al. (2018): Deadwood management in Central European forests: Key considerations for practical implementation. Forest Ecology and Management, 429: 394-405. Go to original source...
  173. Vrška T., Král K. (2018): Lesnické lekce z dynamiky pralesů. Lesnická práce, 7: 470-475.
  174. Wohlgemuth T. et al. (2002): Dominance reduction of species through disturbance - a proposed management principle for central European forests. Forest Ecology and Management, 166(1-3): 1-15. Go to original source...
  175. Zaniewski P.T. et al. (2020): Intermediate disturbance by off-road vehicles promotes endangered pioneer cryptogam species of acid inland dunes. Tuexenia, 40: 479.
  176. Zumr V., Remeš J. (2020): Saproxyličtí brouci jako indikátor biodiversity lesů a vliv lesnického managementu na jejich rozhodující životní atributy: review. Zprávy lesnického výzkumu, 65(4): 242-257.
  177. Abbas F. et al. (2012): Roe deer may markedly alter forest nitrogen and phosphorus budgets across Europe. Oikos, 121(8): 1271-278. Go to original source...
  178. Bartley T.J. et al. (2019): Food web rewiring in a changing world. Nature Ecology & Evolution, 3(3): 345-35= Go to original source...
  179. Bascompte J., Melián C.J. (2005): Simple trophic modules for complex food webs. Ecology, 86(11): 2868-2873. Go to original source...
  180. Bauer B. et al. (2021): Functional trait dimensions of trophic metacommunities. Ecography, 44(10): 1486-1500. Go to original source...
  181. Baxter C.V. et al. (2004): Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology, 85(10): 2656-2663. Go to original source...
  182. Birkhofer K. et al. (2017): Land-use type and intensity differentially filter traits in above-and below-ground arthropod communities. Journal of Animal Ecology, 86(3): 511-520. Go to original source...
  183. Bond E. M., Chase J.M. (2002): Biodiversity and ecosystem functioning at local and regional spatial scales. Ecology Letters, 5(4): 467-470. Go to original source...
  184. Coll M., Guershon M. (2002): Omnivory in terrestrial arthropods: mixing plant and prey diets. Annual Review of Entomology, 47: 267-297. Go to original source...
  185. Dale M.R.T., Fortin M.J. (2021): Quantitative Analysis of Ecological Networks. Cambridge University Press. Cambridge, UK. Go to original source...
  186. Dormann C.F. et al. (2009): Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecology Journal, 2: 7-24. Go to original source...
  187. Dormann C.F. et al. (2017): Identifying causes of patterns in ecological networks: opportunities and limitations. Annual Review of Ecology, Evolution, & Systematics, 48: 559-584. Go to original source...
  188. Guzman L. et al. (2019): Towards a multi-trophic extension of metacommunity ecology. Ecology Letters, 22(1): 19-33. Go to original source...
  189. Hanley T.C., La Pierre K.J. (eds.) (2015): Trophic Ecology. Bottom-up and Top-down Interactions across Aquatic and Terrestrial Systems. Cambridge University Press, Cambridge, UK. Go to original source...
  190. Holt R.D., Bonsall M.B. (2017): Apparent competition. Annual Review of Ecology, Evolution, & Systematics, 48(1): 447-471. Go to original source...
  191. Holt R.D., Huxel G.R. (2007): Alternative prey and the dynamics of intraguild predation: theoretical perspectives. Ecology, 88(11): 2706-2712. Go to original source...
  192. Holt R.D., Polis G.A. (1997): A theoretical framework for intraguild predation. American Naturalist, 149(4): 745-764. Go to original source...
  193. Janssen A. et al. (2007): Habitat structure affects intraguild predation. Ecology, 88(11), 2713-2719. Go to original source...
  194. Khum W. et al. (2022). The invasive pathogenic fungus Hymenoscyphus fraxineus alters predator-herbivore-ash food webs. Biological Invasions, 25: 125-131. Go to original source...
  195. Laundré J.W., et al. (2014): The landscape of fear: the missing link to understand top-down and bottom-up controls of prey abundance? Ecology, 95(5): 1141-1152. Go to original source...
  196. Liu S. et al. (2015): Spider foraging strategy affects trophic cascades under natural and drought conditions. Scientific Reports, 5(1): 1-9. Go to original source...
  197. Loreau M. et al. (2003). Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters, 6(8): 673-679. Go to original source...
  198. Ludwig L. et al. (2018): Caught in the web: Spider web architecture affects prey specialization and spider-prey stoichiometric relationships. Ecology & Evolution, 8(13): 6449-6462. Go to original source...
  199. Martin E.A. et al. (2019): The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 22(7): 1083-1094. Go to original source...
  200. Martinson H.M., Fagan W.F. (2014): Trophic disruption: A meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecology Letters, 17(9): 1178-1189. Go to original source...
  201. Matas A. et al. (2021): Wild boar rooting and rural abandonment may alter food-chain length in arthropod assemblages in a European forest region. Forest Ecology and Management, 479: 118583. Go to original source...
  202. McLeod A.M., Leroux S.J. (2021): The multiple meanings of omnivory influence empirical, modular theory and whole food web stability relationships. Journal of Animal Ecology, 90(2): 447-459. Go to original source...
  203. Melguizo-Ruiz N. et al. (2020): Field exclusion of large soil predators impacts lower trophic levels and decreases leaf-litter decomposition in dry forests. Journal of Animal Ecology, 89(2): 334-346. Go to original source...
  204. Michalko R. et al. (2021): Disturbance by invasive pathogenic fungus alters arthropod predator-prey food-webs in ash plantations. Journal of Animal Ecology, 90(9): 2213-2226. Go to original source...
  205. Michalko R. et al. (2021): Reforestations of tropical forests alter interactions between web-building spiders and their prey. Ecosystems, 24(8): 1962-1975. Go to original source...
  206. Michalko R. et al. (2022): Interaction between hunting strategy, habitat type and stratum drive intraguild predation and cannibalism. Oikos, 2022(3): e08662. Go to original source...
  207. Michalko R., Pekár S. (2017): The behavioral type of a top predator drives the short-term dynamic of intraguild predation. American Naturalist, 189(3): 242-253. Go to original source...
  208. Moore J.C. et al. (eds.). (2018): Adaptive food webs: stability and transitions of real and model ecosystems. Cambridge University Press. Cambridge, UK.
  209. Perkins M.J. et al. (2018). Multichannel feeding by spider functional groups is driven by feeding strategies and resource availability. Oikos, 127(1): 23-33. Go to original source...
  210. Rosenheim J.A., Harmon J.P. (2006): The influence of intraguild predation on the suppression of a shared prey population: an empirical reassessment. Pp. 1-20. In: Brodeur J., Boivin G. (eds.): Trophic and guild in biological interactions control. Springer, Dordrecht. Go to original source...
  211. Schmitz O.J. (2010): Resolving Ecosystem Complexity. Monographs in Population Biology, 47. Princeton University Press, Oxford, USA. Go to original source...
  212. Schuldt A. et al. (2018): Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 9(1): 1-10. Go to original source...
  213. Takimoto G., Post D.M. (2013): Environmental determinants of food-chain length: a meta-analysis. Ecological Research, 28(5): 675-681. Go to original source...
  214. Terborgh J., Estes J.A. (2010): Trophic Cascades. Predators, prey and the changing dynamics of nature. Island Press. Washington, USA.
  215. Thompson R.M. et al. (2012): Food webs: reconciling the structure and function of biodiversity. Trends in Ecology & Evolution, 27(12): 689-697. Go to original source...
  216. Tylianakis J.M., Morris R.J. (2017): Ecological networks across environmental gradients. Annual Review of Ecology, Evolution, & Systematics, 48: 25-48. Go to original source...
  217. Winkler K. et al. (2021): Global land use changes are four times greater than previously estimated. Nature Communications, 12(1): 1-10. Go to original source...
  218. Woodcock P. et al. (2013): Impacts of intensive logging on the trophic organisation of ant communities in a biodiversity hotspot. PLoS One, 8(4): e60756. Go to original source...
  219. Young H.S. et al. (2013). The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems. Ecology, 94(3): 692-701. Go to original source...
  220. Begum N. et al. (2019): Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10: 1-15. Go to original source...
  221. Binder M., Hibbett D.S. (2006): Molecular systematics and biological diversification of Boletales. Mycologia, 98 (6): 971-981. Go to original source...
  222. Bouchra N. et al. (2022): Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity. Frontiers in Soil Science, 2: 979246. Go to original source...
  223. Daguerre Y. et al. (2016): Signaling pathways driving the development of ectomycorrhizal symbiosis. Pp: 141-157. In: Martin F. (ed.): Molecular mycorhizal symbosis. John Wiley & Sons. Go to original source...
  224. Grelet G. et al. (2017): Ecology of ericoid mycorrhizal fungi: What insight have we gained with molecular tool and what is missing? Pp. 405-419. In: Martin F. (ed.): Molecular mycorrhizal symbiosis. John Wiley & Sons. Go to original source...
  225. Gryndler M. et al. (2004): Mykorhizní symbióza. O soužití hub s kořeny rostlin. Academia Praha.
  226. Johnson D., Gilbert L. (2014): Interplant signalling through hyphal networks. New Phytologist, 205(4): 1448-1454. Go to original source...
  227. Hobbie E.A. et al. (2001): Mycorrhizal vs. saprotrophic status of fungi: the isotopic evidence. New Phytologist, 150: 601-610. Go to original source...
  228. Kohler A. (2015): Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47(4): 410-415. Go to original source...
  229. Lehmann A. (2017): Mycorrhizas and soil aggregation. Pp. 241-262. In: Johnson N.C. (ed.): Mycorrhizal mediation of soil. Elsevier. Go to original source...
  230. Lepšová A. (2003): Les jako ektomykorhizní systém. Lesnická práce, 82(4).
  231. Looney B.P. (2018): Russulaceae: a new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytologist, 218(1): 54-65. Go to original source...
  232. Maillard F. et al. (2023): Functional genomics gives new insights into the ectomycorrhizal degradation of chitin. New Phytologist, 238: 845-858. Go to original source...
  233. Miransari M. et al. (2014): Plant hormones as signals in arbuscular mycorrhizal symbiosis. Critical Reviews in Biotechnology, 34(2): 123-133. Go to original source...
  234. Read D.J. Perez-Moreno J. (2003): Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevence? New Phytologist, 157: 475-492. Go to original source...
  235. Simard S.W. (2018): Mycorrhizal networks facilitate tree communication, learning, and memory. Pp. 191-213. In: Baluska F. et al. (eds.): Memory and learning in plants. Signaling and communication in plants. Springer, Cham. Go to original source...
  236. Turner B.L., Condron L.M. (2013): Pedogenesis, nutrient dynamics, and ecosystem development: the legacy of T. W. Walker and J. K. Sysers. Plant and Soil, 367(1-2): 1-10. Go to original source...
  237. Xu H., Zwiazek J.J. (2020): Fungal aquaporins in ectomycorrhizal root water transport. Frontiers in Plant Science, 11: 302. Go to original source...
  238. Ambus P., Zechmeister-Boltenstern S. (2007): Denitrification and N-cycling in forest ecosystems. Pp.: 343-358. In: Bothe et al. (eds.): Biology of the Nitrogen Cycle. Elsevier Science. Go to original source...
  239. Angst G. et al. (2021): Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry, 156: 108189. Go to original source...
  240. Augusto L. et al. (2002): Impact of several common tree species of european temperate forests on soil fertility. Annals of Forest Science, 59(3): 233-253. Go to original source...
  241. Augusto L. et al. (2015): Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews, 90(2): 444-466. Go to original source...
  242. Bálint M. et al. (2016): Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiology Reviews, 6(24): 189-196. Go to original source...
  243. Baldrian P. et al. (2012): Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. Isme Journal, 6(2): 248-258. Go to original source...
  244. Baldrian P. (2017): Forest microbiome: diversity, complexity and dynamics. FEMS Microbiology Reviews, 41(2): 109-30.
  245. Berg B. (2000): Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133: 13-22. Go to original source...
  246. Bernard L. et al. (2022): Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation. Functional Ecology, 36(6): 1355-1377. Go to original source...
  247. Boon E. et al. (2013): Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiology Reviews, 38(1): 90-118. Go to original source...
  248. Brady N.C., Weil, R.R. (2002): The nature and properties of soils. Prentice Hall.
  249. Burns R.G. et al. (2013): Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry, 58: 216-234. Go to original source...
  250. Dighton J. (2021): Fungi in ecosystem processes. 2nd ed., CRC Press.
  251. Edgar R. (2018): Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics, 34(14): 2371-2375. Go to original source...
  252. Fernandez C.W., Kennedy P.G. (2016): Revisiting the "gadgil effect": Do interguild fungal interactions control carbon cycling in forest soils? New Phytologist, 209(4): 1382-1394. Go to original source...
  253. Fierer N. (2017): Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10): 579-590. Go to original source...
  254. Gadd G.M. (ed.) (2001): Fungi in Bioremediation. Cambridge University Press. Go to original source...
  255. Groffman P.M., Tiedje J.M. (1989): Denitrification in North temperate forest soils: Spatial and temporal patterns at the landscape and seasonal scales. Soil Biology & Biochemistry, 21: 613-620. Go to original source...
  256. Haňáčková Z. et al. (2015): Fungal succession in the needle litter of a montane Picea abies forest investigated through strain isolation and molecular fingerprinting. Fungal Ecology, 13:157-66. Go to original source...
  257. Ho A. et al. (2017): Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology, 93(3): 1-14. Go to original source...
  258. Hobbie S.E. et al. (2006): Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 87(9): 2288-2297. Go to original source...
  259. Islam M.R. et al. (2022): Stabilisation of soil organic matter: interactions between clay and microbes. Biogeochemistry, 160(2): 145-158. Go to original source...
  260. Janusz G. et al. (2017): Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews, 41(6): 941-962. Go to original source...
  261. Joergensen R.G., Wichern F. (2018): Alive and kicking: Why dormant soil microorganisms matter. Soil Biology and Biochemistry, 116: 419-430. Go to original source...
  262. Joly F.-X. et al. (2017): Tree species diversity affects decomposition through modified micro-environmental conditions across Ruropean forests. New Phytologist, 214(3): 1281-1293. Go to original source...
  263. Krishna M.P., Mohan M. (2017): Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2(4): 236-249. Go to original source...
  264. Kuzyakov Y. (2010): Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 42(9): 1363-1371. Go to original source...
  265. Lladó S. et al. (2018): Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology, 102(10): 4331-4338. Go to original source...
  266. Madigan M.T. et al. (2011): Brock Biology of Microorganisms. Pearson Education.
  267. Miko L. et al. Život v půdě. Příručka pro začínající půdní biology. Lipka.
  268. Nurmi J. (1997): Heating values of mature trees. Acta Forestalia Fennica, 256: 7517. Go to original source...
  269. Oulehle F. et al. (2019): Effects of bark beetle disturbance on soil nutrient retention and lake chemistry in glacial catchment. Ecosystems, 22(4): 725-741. Go to original source...
  270. Paul E.A. (2016): The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98: 109-126. Go to original source...
  271. Prescott C.E., Grayston S.J. (2013): Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecology and Management, 309: 19-27. Go to original source...
  272. Prescott C.E. et al. (2020): Surplus carbon drives allocation and plant-soil interactions. Trends in Ecology & Evolution, 35(12): 1110-1118. Go to original source...
  273. Sinsabaugh R.L. (2010): Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 42(3): 391-404. Go to original source...
  274. Six J. et al. (2004): A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1): 7-31. Go to original source...
  275. Sylvia D.M. (2005): Principles and Applications of Soil Microbiology. Pearson Prentice Hall.
  276. Šantrůčková H. et al. (2006): Decomposition rate and nutrient release from plant litter of norway spruce forest in the Bohemian forest. Biologia, 61(S20): S499-508. Go to original source...
  277. Šantrůčková H. et al. (2018): Ekologie půdy. Nakladatelství Jihočeské univerzity.
  278. Throckmorton H.M. et al. (2012): The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecology Letters, 15(11): 1257-1265. Go to original source...
  279. Tláskal V. et al. (2021): Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. MSystems, 6(1): e01078-20. Go to original source...
  280. Uroz S. et al. (2013): Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum. Microbial Ecology, 66(2): 404-415. Go to original source...
  281. Uroz S. et al. (2016): Ecology of the forest microbiome: Highlights of temperate and boreal ecosystems. Soil Biology and Biochemistry, 103: 471-488. Go to original source...
  282. Vavříček D., Kučera A. (eds.) (2017): Základy lesnického půdoznalství a výživy lesních dřevin. Lesnická práce.
  283. Yang P., van Elsas J.D. (2018): Mechanisms and ecological implications of the movement of bacteria in soil. Applied Soil Ecology, 129: 112-120. Go to original source...
  284. Abe T., Higashi M. (2001): Isoptera. Pp. 408-433. In: Levin S.A. (ed.): Encyclopedia of Biodiversity (Second Edition). Academic Press. Go to original source...
  285. Asbeck T. et al. (2021): Biodiversity response to forest management intensity, carbon stocks and net primary production in temperate montane forests. Scientific Reports, 11: 1625. Go to original source...
  286. Bánki O. et al. (2022): Catalogue of Life Checklist (Version 2022-12-19). Catalogue of Life.
  287. Bar-On Y.M. et al. (2018): The biomass distribution on Earth. PNAS, 115(25): 6506-6511. Go to original source...
  288. Beattie A.J., Hughes L. (2002): Ant-plant interactions. Pp. 211-235. In: Herrera C.M., Pellmyr O. (eds.) Plant - Animal Interactions. An evolutionary approach. Blackwell Publishing.
  289. Berke S.K. (2010): Functional groups of ecosystem engineers: A proposed classification with comments on current issues. Integrative and Comparative Biology, 50(2): 147-157. Go to original source...
  290. Bernes C. et al. (2015): What is the impact of active management on biodiversity in boreal and temperate forests set aside for conservation or restoration? A systematic map. Environmental Evidence, 4: 25. Go to original source...
  291. Biggs E. et al. (2023): Beyond the theory: From holobiont concept to microbiome engineering. Environmental Microbiology, 25(4): 832-835. Go to original source...
  292. Blackwell M. (2011): The Fungi: 1, 2, 3 … 5.1 million species? American Journal of Botany, 98: 426-438. Go to original source...
  293. Boet O. et al. (2020): The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE, 15(2): e0228625. Go to original source...
  294. Brousseau P.-M. et al. (2018): On the development of a predictive functional trait approach for studying terrestrial arthropods. Journal of Animal Ecology, 87: 1209- 1220. Go to original source...
  295. Burešová A. (2013): Bioturbace a její význam při tvorbě půd. Bakalářská práce, Univerzita Karlova, Praha.
  296. Castro A., Wise D.H. (2010): Influence of fallen coarse woody debris on the diversity and community structure of forest-floor spiders (Arachnida: Araneae). Forest Ecology and Management, 260: 2088-2101. Go to original source...
  297. Dahlsjö C.A.L., Eggleton P. (2020): Kitching R. Tropical terrestrial invertebrates-Where to from here? Biotropica, 52: 392-395. Go to original source...
  298. Davidson T.M. et al. (2018): Bioerosion in a changing world: a conceptual framework. Ecology Letters, 21: 422-438. Go to original source...
  299. Dawson S.K. et al. (2021): The traits of "trait ecologists": An analysis of the use of trait and functional trait terminology. Ecology and Evolution, 11: 16434-16445. Go to original source...
  300. Díaz S. et al. (2013): Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3(9): 2958-2975. Go to original source...
  301. Eckerter T. et al. (2019): Additive positive effects of canopy openness on European bilberry (Vaccinium myrtillus) fruit quantity and quality. Forest Ecology and Management, 433: 122-130. Go to original source...
  302. Edburg S.L. et al. (2012): Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Frontiers in Ecology and the Environment, 10: 416-424. Go to original source...
  303. Eisenhauer N. et al. (2019): Recognizing the quiet extinction of invertebrates. Nature Communications, 10: 50. Go to original source...
  304. Eggleton P. (2020): The State of the World's Insects. Annual Review of Environment and Resources, 45(1): 61-82. Go to original source...
  305. Fontaine B. et al. (2012) New Species in the Old World: Europe as a frontier in biodiversity exploration, a test bed for 21st century taxonomy. PLoS ONE, 7(5): e36881. Go to original source...
  306. Gandhi K.J.K., et al. (2022): Bark beetle outbreaks alter biotic components of forested ecosystems. Pp. 227-259. In: Gandhi K.J.K, Hofstetter R.W. (eds.): Bark beetle management, ecology, and climate change. Academic Press. Go to original source...
  307. Giladi I. (2006): Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos, 112: 481-492. Go to original source...
  308. Gerber R., Schaffner U. (2016). Review of invertebrate biological control agents introduced into Europe. CABI.
  309. Govorushko S. (2019): Economic and ecological importance of termites: A global review. Entomological Science, 22: 21-35. Go to original source...
  310. Gravel D. et al. (2016): The meaning of functional trait composition of food webs for ecosystem functioning. Philosophical Transactions of the Royal Society B, 371: 20150268. Go to original source...
  311. Grevé M.E. et al. (2018): Effect of forest management on temperate ant communities. Ecosphere, 9: e02303. Go to original source...
  312. Griffiths H.M. et al. (2021): The impact of invertebrate decomposers on plants and soil. New Phytologist, 231: 2142-2149. Go to original source...
  313. Hallmann C.A. et al. (2017): More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12(10): e0185809. Go to original source...
  314. Harvey J.A. et al. (2022): Scientists' Warning on climate change and insects. Ecological Monographs: e1553.
  315. Hartshorn J. (2021): A review of forest management effects on terrestrial leaf litter inhabiting arthropods. Forests, 2(1): 23. Go to original source...
  316. Hastings A.et al. (2007): Ecosystem engineering in space and time. Ecology Letters, 10: 153-164. Go to original source...
  317. Heděnec P. et al. (2022): Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Scientific Reports, 12: 17362. Go to original source...
  318. Horton C.G. (ed.) (2017): Earthworms: Types, roles and research. Insects and other terrestrial arthropods: Biology, chemistry and behavior Series. Nova Science Publishers.
  319. Chapman A.D. (2009): Numbers of living species in Australia and the World. 2nd edition. Australian Biodiversity Information Services.
  320. Johnson S.N. (ed.) (2017): Global climate change and terrestrial invertebrates. JohnWiley & Sons, Chichester, Hoboken. Go to original source...
  321. Joimel S. et al. (2022): Collembola are among the most pesticide-sensitive soil fauna groups: A Meta-Analysis. Environmental Toxicology and Chemistry, 41: 2333-2341. Go to original source...
  322. Jones C.G. et al. (1994): Organisms as ecosystem engineers. Oikos, 69(3): 373-386. Go to original source...
  323. Jones C.G. et al. (1997): Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78: 1946-1957. Go to original source...
  324. Jones C.G. et al. (2010): A framework for understanding physical ecosystem engineering by organisms. Oikos, 119: 1862-1869. Go to original source...
  325. Konvička et al. (2006): Ohrožený hmyz nížinných lesů: ochrana a management. Sagittaria, Olomouc.
  326. Krishnan S. et al. (2020): The pollination services of forests - A review of forest and landscape interventions to enhance their cross-sectoral benefits. Forestry Working Paper No. 15. Rome, FAO & Biodiversity International.
  327. Kulakowski D. (2016): Managing bark beetle outbreaks (Ips typographus, Dendroctonus spp.) in conservation areas in the 21st century. Forest Research Papers, 77(4): 352-357. Go to original source...
  328. Langor D.W., Spence J.R. (2006): Arthropods as ecological indicators of sustainability in canadian forests. Forest Chronicles, 82: 344-350. Go to original source...
  329. le Mellec A. et al. (2011): Insect herbivory, organic matter deposition and effects on belowground organic matter fluxes in a central European oak forest. Plant and Soil, 342: 393-403. Go to original source...
  330. Locey K.J., Lennon J.T. (2016): Scaling laws predict global microbial diversity. PNAS, 113(21): 5970-5975. Go to original source...
  331. Lueder S et al. (2022): Functional traits, species diversity and species composition of a neotropical palm community vary in relation to forest. Frontiers in Ecology and Evolution, 10: 678125. Go to original source...
  332. Lunde L.F. et al. (2023): Beetles provide directed dispersal of viable spores of a keystone wood decay fungus. Fungal Ecology, 63: 101232. Go to original source...
  333. Maleque M.A. et al. (2009): Arthropods as bioindicators of sustainable forest management, with a focus on plantation forests. Applied Entomology and Zoology, 44(1): 1-11. Go to original source...
  334. McCary M.A., Schmitz O.J. (2021): Invertebrate functional traits and terrestrial nutrient cycling: Insights from a global meta-analysis. Journal of Animal Ecology, 90: 1714- 1726. Go to original source...
  335. Maccherini S. et al. (2021): Silvicultural management does not affect biotic communities in conifer plantations in the short-term: A multi-taxon assessment using a BACI approach. Forest Ecology and Management, 493: 119257. Go to original source...
  336. Medina-Sauza R.M. et al. (2019): Earthworms building up soil microbiota, a review. Frontiers in Environmental Science, 7: 81. Go to original source...
  337. MEA (Millennium Ecosystem Assessment) 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC.
  338. Mikuláš R., Cílek V. (1998:) Terrestrial insect bioerosion and the possibilities of its fossilization (Holocene to recent, Czech Republic). Ichnos, 5(4): 325-333. Go to original source...
  339. Miko L. et al. (2019): Život v půdě. Lipka, ediční centrum, Brno.
  340. Mora C. et al. (2011): How many species are there on earth and in the ocean? PLoS Biology, 9(8): e1001127. Go to original source...
  341. Moretti M. et al. (2017), Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31: 558-567. Go to original source...
  342. Müller J. et al. (2008): The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodiversity Conservation, 17: 2979-3001. Go to original source...
  343. Müller J. et al. (2010): Learning from a "benign neglect strategy" in a national park: Response of saproxylic beetles to dead wood accumulation. Biological Conservation, 143(11): 2559-2569. Go to original source...
  344. Nock C. et al. (2016): Functional Traits. John Wiley & Sons, Chichester.
  345. Nolet P. et al. (2018): Comparing the effects of even-and uneven-aged silviculture on ecological diversity and processes: A review. Ecology and Evolution, 8: 1217-1226. Go to original source...
  346. Orsi F. et al. (2020): Mapping hotspots and bundles of forest ecosystem services across the European Union. Land Use Policy, 99: 104840. Go to original source...
  347. Osborne P.L. (2000): Tropical ecosystems and ecological concepts. Cambridge University Press, Cambridge.
  348. Thomas P.A., Packham J.R. (2007): Ecology of woodlands and forests. Description, dynamics, diversity. Cambridge University Press, Cambidge. Go to original source...
  349. Paillet Y. et al. (2010): Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conservation Biology, 24(1): 101-112. Go to original source...
  350. Pižl V. (2018): Žížaly a jejich role v půdě. Veronica, 2018(1): 22-24.
  351. Pokhylenko A.P. et al. (2020ú: Influence of saprophages (Isopoda, Diplopoda) on leaf litter decomposition under different humidification and chemical loading. Biosystems Diversity, 28(4): 384-389. Go to original source...
  352. Potapov A.M. et al. (2022): Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biological Reviews, 97: 1057-1117. Go to original source...
  353. Prather C.M. et al. (2013): Invertebrates, ecosystem services and climate change. Biological Reviews, 88: 327-348. Go to original source...
  354. Purchart L. et al. (2013): Arthropod assemblages in Norway spruce monocultures during a forest cycle - A multi-taxa approach. Forest Ecology and management, 306: 42-51. Go to original source...
  355. Rainio J., Niemelä J. (2003): Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation, 12: 487-506. Go to original source...
  356. Raffa K.F. et al. (2015): Natural History and Ecology of Bark Beetles. Pp. 1-40. Vega F.E., Hofstetter R.W. (eds.): Bark Beetles. Academic Press. Go to original source...
  357. Rodríguez A., Kouki J. (2015): Emulating natural disturbance in forest management enhances pollination services for dominant Vaccinium shrubs in boreal pinedominated forests. Forest Ecology and Management, 350: 1-12. Go to original source...
  358. Rodríguez A., Kouki J. (2017): Disturbance-mediated heterogeneity drives pollinator diversity in boreal managed forest ecosystems. Ecological Applications, 27(2): 589-602. Go to original source...
  359. Seibold S. et al. (2019): Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature, 574: 671-674. Go to original source...
  360. Seibold S. et al. (2021): The contribution of insects to global forest deadwood decomposition. Nature, 597: 77-81. Go to original source...
  361. Setälä H. et al. (2022): Acute resource pulses from periodical cicadas propagate to belowground food webs but do not affect tree performance. Ecology, 103(10): e3773. Go to original source...
  362. Schall P. et al. (2018): The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. Journal of Applied Ecology, 55: 267-278. Go to original source...
  363. Schapheer C. et al. (2021): Arthropod-microbiota integration: Its importance for ecosystem conservation. Frontiers in Microbiology, 12: 702-763. Go to original source...
  364. Scheffers B.R. et al. (2012): What we know and don't know about Earth's missing biodiversity. Trends Ecology and Evolution, 27: 501-510. Go to original source...
  365. Schleuning M. et al. (2023): Animal functional traits: Towards a trait-based ecology for whole ecosystems. Functional Ecology, 37: 4-12. Go to original source...
  366. Smith R.L., Smith T.M. (2001): Ecology and field biology. Benjamin Cummings, New York.
  367. Smrž J. (2019): Základy biologie, ekologie a systému bezobratlých živočichů. Karolinum, Praha.
  368. Sterzyńska M. et al. (2020): Responses of soil microarthropod taxon (Hexapoda: Protura) to natural disturbances and management practices in forest-dominated subalpine lake catchment areas. Scientific Reports, 10: 5572. Go to original source...
  369. Stork N. (2018): How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology, 63: 31-45. Go to original source...
  370. Thorn S. et al. (2016): Canopy closure determines arthropod assemblages in microhabitats created by windstorms and salvage logging. Forest Ecology and Management, 38: 188-195. Go to original source...
  371. Šímová I. (2015): K čemu je dobré mapovat vlastnosti organismů? Vesmír, 94:77-78.
  372. van Strien J.V. et al. (2019): Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biological Conservation, 234: 116-122. Go to original source...
  373. Warren R.J., Giladi I. (2014): Ant-mediated seed dispersal: A few ant species (Hymenoptera: Formicidae) benefit many plants. Myrmecological News, 20: 129-140.
  374. Weisser W.W. a Siemann E. (eds.) (2004): Insects and Ecosystem Function. Ecological Studies 173, Springer-Verlag, Berlin, Heidelberg.
  375. Wilson E.O. (1987): The little things that run the world. (The importance and conservation of Invertebrates). Conservation Biology, 1(4): 344-346. Go to original source...
  376. Wong M.K.L. et al. (2019): Trait-based ecology of terrestrial arthropods. Biological Reviews, 94: 999-1022. Go to original source...
  377. Wright J.P., Jones C.G. (2004): Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology, 85(8): 2071-2081. Go to original source...
  378. Wright J.P. Jones C.G. (2006): The concept of organisms as ecosystem engineers ten years on: Progress, limitations, and challenges. BioScience, 56(3): 203-209. Go to original source...
  379. Zakharova L. et al. (2019): Trait-based modelling in ecology: A review of two decades of research. Ecological Modelling, 407: 108703. Go to original source...
  380. Agerer R. (2001): Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza, 11(2): 107-114. Go to original source...
  381. Baldrián P. (2017): Forest microbiom: Diversity, complexity and dynamics. FEMS Microbiology Reviews, 41: 109-130.
  382. Baldrian P. et al. (2013): Estimation of fungal biomass in forest litter and soil. Fungal Ecology, 6(1): 1-11. Go to original source...
  383. Brabcová V. et al. (2016): Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytologist, 10(4): 1369-1381. Go to original source...
  384. Harmon M.E. et al. (1986): Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Resesearch, 34: 59-234. Go to original source...
  385. Hobbie E.A., Agerer R. (2010): Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant and Soil, 237: 71-83. Go to original source...
  386. Holec J., Beran M. (2006): Červený seznam hub, makromycetů, v České republice. Příroda, Praha.
  387. Jin H. et al. (2005): The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist, 168: 687-696. Go to original source...
  388. Kijpornyogpan T. et al. (2022): Systems biology-guided understanding of white-rot fungi for biotechnological applications: A review. iScience, 25(7): 104640. Go to original source...
  389. Kohler A. et al. (2015): Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47(4): 410-415. Go to original source...
  390. Lehmann A. 2017: Mycorrhizas and Soil Aggregation. Pp. 241-262. Johnson N.C. (ed.): Mycorrhizal mediation of soil. Elsevier. Go to original source...
  391. Lepšová A. (2001): Ectomycorrhizal root system of naturally established Norway spruce (Picea abies (L.) Karst.) seedlings from different microhabitats - forest floor and coarse woody debris. Silva Gabreta, 7: 223-234.
  392. Lepšová A. (2003): Les jako ektomykorhizní systém. Lesnická práce, 82(4).
  393. Lepšová A. (2012): Mutualistické symbiózy dřevin v obnově člověkem narušených biotopů. Mendelova univerzita v Brně.
  394. Lepšová A. (2013): Biologická diverzita "brownfields" a mykologické aspekty biologické obnovy. Prezentace 7. března 2013.
  395. Liu S. et al. (2022): Systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. Fungal Diversity, 118: 1-94. Go to original source...
  396. Maillard F. et al. (2023): Functional genomics gives new insights into the ectomycorrhizal degradation of chitin. New Phytologist, 238: 845-858. Go to original source...
  397. Marek J., Lepšová A. (1999): Armillaria populations and pathology at different forest sites of South Bohemia. Silva Gabreta, 3: 7-16.
  398. Nilsson L.O., Wiklund K. (1995): Indirect effects of N and S deposition on a Norway spruce ecosystem. An update of findings within the Skogaby project. Water, Air, Soil Pollution, 85: 1613-1622. Go to original source...
  399. Nováková M (2013): Rozklad biomasy hub v lesní půdě a identifikace struktury a funkce společenstva rozkladačů. Diplomová práce, Masarykova univerzita, Brno.
  400. Ostonen I. et al. (2005): Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods. Forest Ecology and Management, 212(1-3): 264-277. Go to original source...
  401. Ouimette A.P. et al. (2020): Accounting for carbon flux to mycorrhizal fungi may resolve discrepancies in forest carbon budgets. Ecosystems, 23: 715-729. Go to original source...
  402. Pfeffer P.E. et al. (2004ú: The fungus does not transfer carbon to or between roots in an arbuscular mycorrhiza. New Phytologist, 163: 617-627. Go to original source...
  403. Pouska V. et al (2011): How do log characteristics influence the occurrence of wood fungi in a mountain spruce forest? Fungal Ecology. 4: 201-209. Go to original source...
  404. Pouska V. et al. (2010): The diversity of wood-decaying fungi in relation to changing site conditions in an old-growth mountain spruce forest, Central Europe. European Journal of Forest Research, 129: 219-231. Go to original source...
  405. Rozmoš M. (2007): Využití stabilních izotopů ve studiu mykorhizních hub. Bakalářská práce, Masarykova univerzita, Brno.
  406. Russell M.B. et al. (2015): Quantifying carbon stores and decomposition in dead wood: A review. Forest Ecology and Management, 350: 107-128. Go to original source...
  407. Rypáček V. (1957): Biologie dřevokazných hub. Nakladatelství ČSAV, Praha
  408. Spatafora J.W. et al. (2017): The fungal tree of life: from molecular systematics to genome-scale phylogenies. Microbiology Spectrum, 5 (5). Go to original source...
  409. Štursová M. et al. (2020): Production of fungal mycelia in a temperate coniferous forest shows distinct seasonal patterns. Journal of Fungi, 6(4): 190. Go to original source...
  410. Wallander H. et al. (2001): Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist, 151(3): 753-760. Go to original source...
  411. Ammer C. (1996): Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. Forest Ecology and Management, 88: 43-54. Go to original source...
  412. Anděra A. (2023): Výskyt kopytníků v ČR. Mapování v kvadrátech 11 × 12 km. Dostupné z: http:/wwwbiolib.cz
  413. Apollonio M. et al. (2010): European ungulates and their management in the 21st century. Cambridge University Press, Cambridge.
  414. Ballardi S. et al. (2013): A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Review, 44(2): 124-134. Go to original source...
  415. Barančeková M. et al. (2007): Impact of deer browsing on natural and artificial regeneration in floodplain forest. Folia Zoologica, 56: 354-364.
  416. Baubet E. et al. (2004): Diet of the wild boar in the French Alps. Galemys, 16: 99-111.
  417. Čermák P. et al (2011): Impact of ungulate browsing on forest dynamics. Lesnická práce, Kostelec nad Černými lesy.
  418. Čermák P., Mrkva R. (2003): Vliv mysliveckého hospodaření na vývoj dřevinné vegetace. Lesnická práce.
  419. Černý M. et al. (2016): Inventarizace škod zvěří na lesním hospodářství České republiky: Závěrečná zpráva IFER. Ústav pro výzkum lesních ekosystémů, Jílové u Prahy.
  420. Červený J. et al. (2017): Harmonizace managementu populací zvěře a lesních ekosystémů v kontextu očekávaných klimatických změn a minimalizace škod na lesních porostech. Závěrečná zpráva, výzkumný projekt NAZV QJ1220314.
  421. European Environmental Agency (2023): Dostupné z: https://www.eea.europa.eu/data-and-maps/data/digital-map-of-european-ecological-regions/technical-report/technical-report
  422. de Boer W.F., Prins H.H.T. (1990): Large herbivores that strive mightily but eat and drink as friends. Oecologia, 82: 264-274. Go to original source...
  423. Duda J. et al. (2020): Přestavba lesa potřebuje lov. Pro Silva Bohemica, Česká technologická platforma pro zemědělství.
  424. Flowerdew J.R., Ellwood S.A. (2001): Impact of woodland deer on small mammal ecology. Forestry, 74: 277-287. Go to original source...
  425. Frank B. (2008): Understanding the nature of human dimensions: integrating people in wild boar management. In: 7th international symposium on wild boar (Sus scrofa) and on sub-order Suiformes. Sopron, Hungary.
  426. Geisser H., Reyer H.U. (2005): The influence of food and temperature on population density of wild boar Sus scrofa in the Thurgau (Switzerland). Journal of Zoology, 267: 89-96. Go to original source...
  427. Genov P. (1981): Food composition of wild boar in north-eastern and western Poland. Acta Theriologica, 26:185-205. Go to original source...
  428. Gill R.M.A. (1992): Review of damage by mammals in North temperate forest: 1. Deer. Forestry, 65: 145 - 169. Go to original source...
  429. Gill R.M.A., Fuller R.J. (2007): The effects of deer browsing on woodland structure and songbirds in lowland Britain. Ibis, 149: 119-127. Go to original source...
  430. Goulding M.J. et al. (1998): Current status and potential impact of wild boar (Sus scrofa) in the English countryside: a risk assessment. Report to the Ministry of Agriculture, Fisheries and Food, Central Science Laboratory, York.
  431. Heroldová M. (1990): Trophic niches of the mouflon (Ovis musimon) and the sika deer (Cervus nippon) in the same biotope in winter. Folia Zoologica, 39(2): 105-110.
  432. Heroldová M. (1993): The food of red deer (Cervus elaphus) in a part of the Krušné hory mountains affected by emission. Folia Zoologica, 42: 381-382.
  433. Heroldová M. (1996): Dietary overlap of three ungulate species in the Palava Biosphere Reserve. Forest Ecology and Management, 88: 139-142. Go to original source...
  434. Heroldová M. (2010): Introdukovaní a autochtonní kopytníci. Potravní strategie v různých lesních prostředích. Habilitační práce, Ústav biologie obratlovců, Brno.
  435. Hofmann R.R. (1989): Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia, 78: 443-457. Go to original source...
  436. Homolka M. (1991): The food of roe deer (Capreolus capreolus) in the mixed forest habitat of the Drahanská vrchovina highlands. Folia Zoologica, 40: 307-315.
  437. Homolka M. (1995): The diet of Cervus elaphus and Capreolus capreolus in deforested areas of the Moravskoslezské Beskydy Mountains. Folia zoologica, 44: 227-236.
  438. Homolka M. et al. (2008): White-tailed deer winter feeding strategy in area shared with other deer species. Folia zoologica, 57: 283-293.
  439. Homolka M., Heroldová M. (1990): Vegetation as the food supply for game in a forest near Hostěnice. Acta scientiarum naturalium Academiae scientiarum Bohemicae - Brno, 24(11):1-44.
  440. Homolka M., Heroldová M. (1992): Similarity of the results of stomach and faecal contents analyses in studies of the ungulate diet. Folia Zoologica, 41: 193-208.
  441. Homolka M., Heroldová M. (1999): Životní podmínky a perspektiva losa evropského na území České republiky. Pp. 152-156. In: Sborník referátů Introdukovaná spárkatá zvěř "99". Současná a budoucí chovatelská problematika. Česká lesnická společnost. Dobříš 20. - 21. srpna 1999.
  442. Homolka M., Heroldová M. (2001): Native red deer and introduced chamois: foraging habits and competition in a subalpine meadow-spruce forest area. Folia zoologica, 50: 89-98.
  443. Homolka M., Heroldová M. (2003): Impact of large herbivores on mountain forest stands in the Beskydy Mountains. Forest Ecology and Management, 181: 119-129. Go to original source...
  444. Homolka M., Heroldová M. (2006): Kvalitní potravní nabídka: prevence mladých porostů před okusem velkých herbivorů v oblasti NPP Kněhyně. Beskydy
  445. Kamler J. et al. (2007): Únosný stav zvěře - komplex vztahů mezi býložravci a vegetací. Pp. 23-26. In: Zjišťování početních stavů zvěře a myslivecké plánování. Most.
  446. Kamler J. et al. (2009): Reduction of herbivore density as a tool for reduction of herbivore browsing on palatable tree species. European Journal of Forest Research, 129: 155-162. Go to original source...
  447. Kamler J., Homolka M. (2005): Faecal nitrogen: a potential indicator of red and roe deer diet quality in forest habitats. Folia Zoologica, 54: 89-98.
  448. Katona K. et al. (2014): Evaluating the impact of wild boar on oak regeneration in Hungary. In: 10th International Symposium on Wild Boar and other Suids, Velenje, Slovenia, Septeber 1-5, 2014.
  449. Kirschning J. et al. (2008): Population genetics of the wild boar in Europe. In: 7th international symposium on wild boar (Sus scrofa) and on sub-order Suiformes. Sopron, Hungary.
  450. Lotocký M., Turek K. (2022): Myslivecká statistika 2021/2022. Myslivost, 10: 12.
  451. Lubojacký J. et al. (2021): Hlavní problémy v ochraně lesa v Česku v roce 2020 a prognóza na rok 2021. Škodliví činitelé v lesích Česka 2020/2021 Zpravodaj ochrany lesa, Ochrana lesa na kalamitních holinách 24: 17-26.
  452. Mikulka O. et al. (2018): The Importance of natural food in wild boar (Sus scrofa) diet during autumn and winter. Folia Zoologica, 67: 165-172. Go to original source...
  453. Petty S.J., Avery M.I. (1990): Forest bird communities. Occasional Paper 26, Forestry Commission, Edinburgh.
  454. Pondělíček. J. (2011): Myslivost - vznik, současnost a směřování. Myslivost: Stráž myslivosti, 59: 12.
  455. Putman R.J. (1986) Competition and coexistence in a multispecies grazing system. Acta Theriologica, 31: 271-291. Go to original source...
  456. Putman R.J. (1994): Community Ecology. Chapman and Hall, London.
  457. Putman R. et al. (2011): Identifying threshold densities for wild deer in the UK above which negative impacts may occur. Mammal Review, 41: 175-196. Go to original source...
  458. Putman R. et al. (2011). Assessing deer densities and impacts at the appropriate level for management: a review of methodologies for use beyond the site scale. Mammal Review, 41: 197-219. Go to original source...
  459. Reimoser F., Putman R.J. (2011): Impact of large ungulates on agriculture, forestry and conservation habitats in Europe. In: Putman R.J. (eds.): Ungulate management in Europe: Problem and practise. Cambridge University Press, UK.
  460. Simon J., Kolář C. (2001): Ekonomické hodnocení ztrát loupáním vysokou zvěří na základě analýzy na časové růstové řadě smrkových porostů z oblasti Hrubého Jeseníku. Lesnická práce, 80: 206-208.
  461. Švarc J. et al. (1981): Ochrana proti škodám způsobeným zvěří. SZN, Praha.
  462. Švestka M. et al. (1996): Praktické metody v ochraně lesa. Ministerstvo zemědělství České republiky.
  463. Tei S. et al. (2003): Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet, 362: 371-373. Go to original source...
  464. Thomas P.A., Packham J.R. (2007): Ecology of Woodlands and Forests. Description, Dynamic and Diversity. Cambridge University Press. Go to original source...
  465. Wolf R. (1999): Historie chovu jelena siky na území České republiky. Pp. 52-56. In: Sborník referátů Introdukovaná spárkatá zvěř "99". Současná a budoucí chovatelská problematika. Česká lesnická společnost. Dobříš 20.-21. srpna 1999.
  466. Zahradník P., Zahadníková M. (2022): Integrovaná ochrana rostlin. Příloha k metodické příručce pro rok 2022. Seznam povolených přípravků a dalších prostředků na ochranu lesa. Lesní ochranná služba VÚLHM, v.v.i., Nakladatelství a vydavatelství Lesnická práce.
  467. Zejda J., et al. (1985): Study of behaviour in field roe deer (Capreolus capreolus). Acta Scientiarum Naturalium Academiae Scientiarum Bohemoslovacae, 19: 1-37.
  468. Zeman J., et al. (2016): Wild boar impact to the natural regeneration of oak and acorn importance in its diet. Acta universitatis agriculturae et silviculturae Mendelianae Brunensis, 64: 579-585. Go to original source...
  469. Zeman et al. (2018): Influence of various diet supply on the diet composition of wild boar during the year. Biologia, Bratislava, 73(3): 259-265. Go to original source...
  470. Allombert et al. (2005): A natural experiment on the impact of overabundant deer on forest invertebrates. Conservation Biology, 19: 1917-1929. Go to original source...
  471. Alverson W.S. et al. (1988): Forests too deer: edge effects in northern Wisconsin. Conservation Biology, 2: 348-358. Go to original source...
  472. Anděra M., Gaisler J. (2012): Savci České republiky: popis, rozšíření, ekologie, ochrana. Academia, Praha.
  473. Anděra M., Horáček I. (2005): Poznáváme naše savce. Sobotáles, Praha.
  474. Andersen R. et al. (2007): Selectivity of Eurasian lynx Lynx lynx and recreational hunters for age, sex and body condition in roe deer Capreolus capreolus. Wildlife Biology, 13: 467-474. Go to original source...
  475. Andersone Ž., Ozoliņš J. (2004): Food habits of wolves Canis lupus in Latvia. Acta Theriologica, 49: 357-367. Go to original source...
  476. Apollonio M. et al. (2010): European ungulates and their management in the 21st century. Cambridge University Press, Cambridge.
  477. Barančeková M. et al. (2007): Impact of deer browsing on natural and artificial regeneration in floodplain forest. Folia Zoologica, 56: 354-364.
  478. Beschta R.L., Ripple W.J. (2012): The role of large predators in maintaining riparian plant communities and river morphology. Geomorphology, 157-158: 88-98. Go to original source...
  479. Bubeník A.B. (1966): Vliv rysa (Lynx lynx L.) a vlka (Canis lupus L.) na strukturu populací srnčí (Capreolus capreolus L.) a jelení zvěře (Cervus elaphus L.). Lynx n. s., 6: 7-10.
  480. Čermák P., Mrkva R. (2003a): Browsing damage to broadleaves in some national nature reserves (Czech Republic) in 2000-2001. Ekológia (Bratislava), 22: 132-141.
  481. Čermák P., Mrkva R. (2003b): Vliv mysliveckého hospodaření na vývoj dřevinné vegetace. Lesnická práce, 82.
  482. Čermák P., Mrkva R. (2006): Přirozená obnova pod tlakem zvěře na příkladu NPR Vrapač. Lesnická práce, 85: 28-29.
  483. Čermák P. et al. (2011): Impact of ungulate browsing on forest dynamics. Lesnická práce, Kostelec nad Černými lesy.
  484. Černý M. et al. (2016): Inventarizace škod zvěří na lesním hospodářství České republiky: Závěrečná zpráva. IFER - Ústav pro výzkum lesních ekosystémů, Jílové u Prahy.
  485. Červený J. (2006): Myslivec a rys, dva lovci a jedna kořist - srnčí zvěř. Svět myslivosti, 7: 8-11.
  486. Červený J. et al. (2006): Velké šelmy v České republice. IV. Rys ostrovid. Vesmír, 85: 86-94.
  487. Červený J. et al. (2005): Program péče pro velké šelmy: rysa ostrovida (Lynx lynx), medvěda hnědého (Ursus arctos) a vlka obecného (Canis lupus) v České republice. (předběžná verze).
  488. Duľa M. et al. (2021): Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range. Scientific Reports, 11: 9236. Go to original source...
  489. Elmhagen B. (2010): Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. Journal of Animal Ecology, 79: 785-94. Go to original source...
  490. Elmhagen B., Rushton S.P. (2007): Trophic control of mesopredators in terrestrial ecosystems: top-down or bottom-up? Ecology Letters, 10: 197-206. Go to original source...
  491. Engman J.H. (2005): Czech roe deer in maps: Srnčí trofeje v ČR v mapovém vyjádření. Lysá nad Labem.
  492. Filonov C. (1980): Predator-prey problems in nature reserves of the European part of the RSFSR. Journal of Wildlife Management, 44: 389-396. Go to original source...
  493. Finďo S. (2002): Potravná ekológia vlka (Canis lupus) v Slovenských Karpatoch. Pp. 43-55. In: Výskum a ochrana cicavcov na Slovensku. V. Zborník Ref. z Konf. Zvolen. Bánská Bystrica.
  494. Finďo S. et al. (2011): Ochrana lesa proti škodám zverou. Lesnícky výskumný ústav, Zvolen.
  495. Gable T.D. (2018): The forgotten prey of an iconic predator: a review of interactions between grey wolves Canis lupus and beavers Castor spp. Mammal Review, 48(2): 123-138. Go to original source...
  496. Gill R.M.A., Fuller R.J. (2007): The effects of deer browsing on woodland structure and songbirds in lowland Britain. Ibis (Lond. 1859), 149: 119-127. Go to original source...
  497. Haemig P.D. et al. (2008): Red fox and tick-borne encephalitis (TBE) in humans: can predators influence public health? Scandidavian Journal if Infection Disseases, 40: 527-532. Go to original source...
  498. Hairston N.G. et al. (1960): Community structure, population control, and competition. American Naturalist, 94: 421-425. Go to original source...
  499. Hell P., Slamečka J. (1999): Medveď v slovenských Karpatoch a vo svete. PaRPRESS, Bratislava.
  500. Hell, P., Slamečka, J. & Gašpárík, J. (2004). Rys a divá mačka v slovenských Karpatoch a vo svete. PaRPRESS, Bratislava.
  501. Helldin J.O. (2006): Lynx (Lynx lynx) killing red foxes (Vulpes vulpes) in boreal Sweden - Frequency and population effects. Journal of Zoology, 270: 657-663. Go to original source...
  502. Heurich M. et al. (2012): Survival and causes of death of European Roe Deer before and after Eurasian Lynx reintroduction in the Bavarian Forest National Park. European Journal of Wildlife Research, 58: 567-578. Go to original source...
  503. Heurich M. et al. (2018): Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biological Conservation, 224: 355-365. Go to original source...
  504. Homolka M., Heroldová M. (2003): Impact of large herbivores on mountain forest stands in the Beskydy Mountains. Forest Ecology and Management, 181: 119-129. Go to original source...
  505. Hughes J., Macdonald D.W. (2013): A review of the interactions between free-roaming domestic dogs and wildlife. Biological Conservation, 157: 341-351. Go to original source...
  506. Jȩdrzejewski W., Jȩdrzejewska B. (2005): Large carnivores and ungulates in European temperate forest ecosystems: bottom up and top down control. Pp. 230-246. In: Ray J.C. et al. (eds.): Large Carniv. Conserv. Biodivers. Island Press, Washington DC,.
  507. Kamler J. et al. (2009): Reduction of herbivore density as a tool for reduction of herbivore browsing on palatable tree species. European Journal of Forest Research, 129: 155-162. Go to original source...
  508. Kenderes K. et al. (2009). Natural gap dynamics in a central European mixed beech-spruce-fir old-growth forest. Ecoscience, 16: 39-47. Go to original source...
  509. Komárek J. (1942): Lovy v Karpatech. Státní zemědělské nakladatelství, Praha.
  510. Konvička M. (2004): Ohrožený hmyz nížinných lesů: ochrana a management. Sagittaria, Olomouc.
  511. Koubek P., Červený J. (2003): Vliv rysa ostrovida na populace srnčí zvěře. Svět myslivosti, 4: 8-10.
  512. Kuijper D.P.J. (2011): Lack of natural control mechanisms increases wildlife-forestry conflict in managed temperate European forest systems. European Journal of Forets Research, 130: 895-909. Go to original source...
  513. Kuijper D.P.J. et al. (2009): Do ungulates preferentially feed in forest gaps in European temperate forest? Forest Ecology and Management, 258: 1528-1535. Go to original source...
  514. Kuijper D.P.J. et al. (2013): Landscape of fear in Europe: wolves affect spatial patterns of ungulate browsing in Białowieża Primeval Forest, Poland. Ecography, 36: 1263-1275. Go to original source...
  515. Kullberg C., Ekman J. (2000): Does predation maintain tit community diversity? Oikos, 89: 41-45. Go to original source...
  516. Linnell J.D.C. et al. (2005): The Linkage between conservation strategies for large carnivores and biodiversity: the view from the "half-full" forests of Europe. Pp. 381-398. In: Ray J. et al. (eds.): Large Carnivores and the Conservation of Biodiversity. Island Press.
  517. Lõhmus A. (2001): Status of large carnivore conservation in the Baltic states: large carnivore control and management plan for Estonia, 2002-2011. Council of Europe, Strassburg.
  518. Loss S.R. et al. (2013): The impact of free-ranging domestic cats on wildlife of the United States. Nature Communications, 4: 1396. Go to original source...
  519. Madsen P., Hahn K. (2008): Natural regeneration in a beech-dominated forest managed by close-to-nature principles - a gap cutting based experiment. Canadian Journal of Forest Research, 38: 1716-1729. Go to original source...
  520. McLaren B.E, Peterson R.O. (1994): Wolves, moose, and tree rings on Isle Royale. Science, 266: 1555-1558. Go to original source...
  521. Mech L.D., Boitani L. (2003): Wolves: behavior, ecology and conservation. University of Chicago Press, Chicago. Go to original source...
  522. Mejlgaard T. et al. (2013): Lynx prey selection for age and sex classes of roe deer varies with season. Journal of Zoology, 289: 222-228. Go to original source...
  523. Melis C. et al. (2009): Predation has a greater impact in less productive environments: variation in roe deer, Capreolus capreolus, population density across Europe. Global Ecology and Biogeography, 18: 724-734. Go to original source...
  524. Míchal I. (1992): Obnova ekologické stability lesů. Academia, Praha.
  525. Modrý M. et al. (2004): Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability. Forest Ecology and Management, 188: 185-195. Go to original source...
  526. Molinari-Jobin A. et al. (2003): The pan-alpine conservation strategy for lynx. Council of Europe Publishing, Nature and Environment, 130: 1-22.
  527. Molinari-Jobin A. et al. (2002): Significance of lynx Lynx lynx predation for roe deer Capreolus capreolus and chamois Rupicapra rupicapra mortality in the Swiss Jura Mountains. Wildlife Biology, 8: 109-115. Go to original source...
  528. Molinari-Jobin A. et al. (2004): Life cycle period and activity of prey influence their susceptibility to predators. Ecography, 27: 323-329. Go to original source...
  529. Molinari-Jobin A. et al. (2007): Variation in diet, prey selectivity and home-range size of Eurasian lynx Lynx lynx in Switzerland. Wildlife Biology, 13: 393-405. Go to original source...
  530. Nowak S. (2005): Patterns of wolf Canis lupus predation on wild and domestic ungulates in the Western Carpathian Mountains (S Poland). Acta Theriologica, 50: 263-276. Go to original source...
  531. Okarma H.et al. (1984): The physical condition of red deer falling a prey to the wolf and lynx and harvested in the Carpathian mountains Poland. Acta Theriologica, 29: 283-290. Go to original source...
  532. Okarma H. et al. (1995): The trophic ecology of wolves and their predatory role in ungulate communities of forest ecosystems in Europe. Acta Theriologica, 40: 335-386. Go to original source...
  533. Okarma H. et al. (1997): Predation of Eurasian lynx on roe deer and red deer in Bialowieza Primeval Forest, Poland. Acta Theriologica, 42: 203-224. Go to original source...
  534. Ostfeld R.S., Holt R.D. (2004): Are predators good for your health? evaluating evidence for top-down regulation of zoonotic risease reservoirs. Frontiers in Ecology and the Environment, 2: 13-20. Go to original source...
  535. Pasanen-Mortensen M. et al. (2017): The changing contribution of top-down and bottom-up limitation of mesopredators during 220 years of land use and climate change. Journal of Animal Ecology, 86. Go to original source...
  536. Petříček V., Míchal I. (2002): Péče o chráněná území: 2. Lesní společenstva. Agentura ochrany přírody a krajiny ČR, Praha.
  537. Pyare S., Berger J. (2003): Beyond demography and delisting: ecological recovery for Yellowstone's grizzly bears and wolves. Biological Conservation, 113: 63-73. Go to original source...
  538. Ripple W.J., Beschta R.L. (2004): Wolves and the ecology of fear: can predation risk structure ecosystems? Bioscience, 54: 755-766. Go to original source...
  539. Ripple W.J., Beschta R.L. (2012a): Large predators limit herbivore densities in northern forest ecosystems. European Journal of Wildlife Research, 58: 733-742. Go to original source...
  540. Ripple W.J., Beschta, R.L. (2012b): Trophic cascades in Yellowstone: The first 15 years after wolf reintroduction. Biological Conservation, 145: 205-213. Go to original source...
  541. Rooney T.P. et al. (2004): Biotic impoverishment and homogenization in unfragmented forest understory communities. Conservation Biology, 18: 787-798. Go to original source...
  542. Selva N. et al. (2005): Factors affecting carcass use by a guild of scavengers in European temperate woodland. Canadian Journal of Zoology, 83: 1590-1601. Go to original source...
  543. Sidorovich V. (2017): Responses of wolf feeding habits after adverse climatic events in central-western Belarus. Mammalian Biology, 83. Go to original source...
  544. Śmietana W. (2005): Selectivity of wolf predation on red deer in the Bieszczady Mountains, Poland. Acta Theriologica, 50: 277-288. Go to original source...
  545. Sobotka R. (2007): Pytláci v Beskydech. Víkend, Líbeznice.
  546. Špinkytė-Bačkaitienė R., Pėtelis K. (2012): Diet composition of wolves (Canis lupus L.) in Lithuania. Acta Biologica Universitatis Daugavpiliensis, 12: 100-105.
  547. Stahl P. et al. (2001): Predation on livestock by an expanding reintroduced lynx population: long-term trend and spatial variability. Journal of Applied Ecology, 38: 674-687. Go to original source...
  548. Stockton S. (2005): A natural experiment on the effects of high deer densities on the native flora of coastal temperate rain forests. Biological Conservation, 126: 118-128. Go to original source...
  549. Sunde: P. et al. (1999): Intraguild predation of lynxes on foxes: Evidence of interference competition? Ecography, 22: 521-523. Go to original source...
  550. Šustr P. (2013): Jelenovití na Šumavě. Správa Národního parku a Chráněné krajinné oblasti Šumava, Vimperk.
  551. Terborgh J., Estes J.A. (2010): Trophic Cascades: Predators, prey and the changing dynamics of nature. Island Press, Washington DC.
  552. Turek K. et al. (2010). Škody zvěří na lesních porostech Moravskoslezských Beskyd a vybrané ekologické faktory, které je ovlivňují. Acta Musei Beskidensis, 2: 173-181.
  553. Vorlíček P. (2007): Tisková zpráva MZe 12. 11. 2007. Dostupné z: http://www.bezpecnostpotravin.cz/tiskova-zprava-mze-12-11-2007_1.aspx.
  554. Voskár J. (1993): Ekológia vlka obyčejného (Canis lupus) a jeho podiel na formování a stablite karpatských ekosystémov na Slovensku. Ochrana prírody, 12: 241-276.
  555. Žunna A. et al. (2009): Food habits of the wolf Canis lupus in Latvia based on stomach analyses. Estonian Journal of Ecology, 58: 141. Go to original source...
  556. Bureš S. (2002): Ptactvo a hmyzí škůdci lesů a zahrad. Knihovna Moravského ornitologického sdružení, Přerov.
  557. Fuller R.J. (1995): Bird life of woodland and forests. Cambridge University Press, Cambridge.
  558. Gregory R.D. et al. (2015): Developing indicators for European birds. Philosifical Transactions of the Royal Society B: Biological Sciences, 360: 269-288. Go to original source...
  559. Holmes R.T., Likens G.E. (2016): Hubbard Brook. The story of a forest ecosystem. Yale University Press.
  560. Mikusinski G. et al. (2018): Ecology and conservation of forest birds. Cambridge University Press, Cambridge.
  561. Reif J. et al. (2009): Vliv globálních klimatických změn na vývoj početnosti ptáků v ČR. Ochrana přírody.
  562. Reif J., Vermouzek Z. (2018): Collapse of farmland bird populations in an Eastern European country following its EU accession. Conservation Letters, 12(1): e12585. Go to original source...
  563. Šťastný K. (2019): Biodiverzita avifauny v České republice. Živa, 5: 261-263.
  564. Bošeľa M. et al. (2013): Evaluating competitive interactions between trees in mixed forests in the Western Carpathians: Comparison between long-term experiments and SIBYLA simulations. Forest Ecology and Management, 310: 577-588. Go to original source...
  565. Bošeľa M. et al. (2015): Different mixtures of Norway spruce, silver fir, and European beech modify competitive interactions in central European mature mixed forests. Canadian Journal of Forest Research, 45(11): 1577-1586. Go to original source...
  566. Bošeľa M. et al. (2021): Thinning decreases above-ground biomass increment in central European beech forests but does not change individual tree resistance to climate events. Agricultural and Forest Meteorology, 306: 108441. Go to original source...
  567. Bošeľa M. et al. (2022): Modelling future growth of mountain forests under changing environments. Pp. 223-262. In: Tognetti R. et al. (eds.): Climate-smart forestry in mountain regions. Springer International Publishing. Go to original source...
  568. Bottero A. (2017): Density-dependent vulnerability of forest ecosystems to drought. Journal of Applied Ecology, 54: 1605-1614. Go to original source...
  569. Burkhart H.E., Tomé M. (2012): Modeling Forest Trees and Stands. Springer, Netherlands. Go to original source...
  570. Condés S. et al. (2022): Temperature effect on size distributions in spruce-fir-beech mixed stands across Europe. Forest Ecology and Management, 504: 119819. Go to original source...
  571. Fichtner A. (2017): From competition to facilitation: how tree species respond to neighbourhood diversity. Ecology Letters, 20: 892-900. Go to original source...
  572. Ford K.R. et al. (2017): Competition alters tree growth responses to climate at individual and stand scales. Canadian Journal of Forest Research, 47(1): 53-62. Go to original source...
  573. Forrester D.I. et al. (2017): Diversity and competition influence tree allometric relationships - developing functions for mixed-species forests. Journal of Ecology, 105: 761-774. Go to original source...
  574. Goisser M. et al. (2016): Does belowground interaction with Fagus sylvatica increase drought susceptibility of photosynthesis and stem growth in Picea abies? Forest Ecology and Management, 375: 268-278. Go to original source...
  575. Haberstroh S., Werner C. (2022): The role of species interactions for forest resilience to drought. Plant Biology, 24: 1098-1107. Go to original source...
  576. Kunstler G. et al. (2015): Plant functional traits have globally consistent effects on competition. Nature, 529: 204-207. Go to original source...
  577. Lamothe K.A. et al. (2019): Linking the ball-and-cup analogy and ordination trajectories to describe ecosystem stability, resistance, and resilience. Ecosphere, 10(3): e02629. Go to original source...
  578. Mina M et al. (2018): Multiple factors modulate tree growth complementarity in Central European mixed forests. Journal of Ecology, 6: 1106- 1119. Go to original source...
  579. Pretzsch H. (2019): The effect of tree crown allometry on community dynamics in mixed-species stands versus monocultures. A review and perspectives for modeling and silvicultural regulation. Forests, 10(9): 810. Go to original source...
  580. Pretzsch H. et al. (2012): Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in stands with different spatial mixing patterns. Trees, 26: 1343-1360. Go to original source...
  581. Pretzsch H. (2022): Facilitation and competition reduction in tree species mixtures in Central Europe: Consequences for growth modelling and forest management. Ecological Modelling, 464: 109812. Go to original source...
  582. Reyer C.P. et al. (2015): Forest resilience, tipping points and global change processes. Journal of Ecology, 103: 1-4. Go to original source...
  583. Scheffer M. (2009): Critical transitions in nature and society. Princeton University Press, Princeton, New Jersey, USA.
  584. Seidl R. et al. (2016): Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology, 53:120-129. Go to original source...
  585. Araújo M.S. et al. (2011): The ecological causes of individual specialisation. Ecology Letters, 14(9): 948-958. Go to original source...
  586. Araújo M.S., Gonzaga M.O. (2007): Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behavioral Ecology & Sociobiology, 61(12): 1855-1863. Go to original source...
  587. Balme G.A. et al. (2020): Ecological opportunity drives individual dietary specialization in leopards. Journal of Animal Ecology, 89(2): 589-600. Go to original source...
  588. Berger-Tal O. et al. (2011): Integrating animal behavior and conservation biology: a conceptual framework. Behavioral Ecology, 22(2): 236-239. Go to original source...
  589. Bertorelle G. et al. (2009): Population genetics for animal conservation. Cambridge University Press.
  590. Bolnick D.I. (2011): Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26(4): 183-192. Go to original source...
  591. De Lisle S.P. et al. (2022): Complex community-wide consequences of consumer sexual dimorphism. Journal of Animal Ecology, 91(5): 958-969. Go to original source...
  592. Des Roches S. et al. (2018): The ecological importance of intraspecific variation. Nature Ecology & Evolution, 2(1): 57-64. Go to original source...
  593. Des Roches S. et al. (2021): Conserving intraspecific variation for nature's contributions to people. Nature Ecology & Evolution, 5(5): 574-582. Go to original source...
  594. de Roos A.M. (2021): Dynamic population stage structure due to juvenile-adult asymmetry stabilizes complex ecological communities. Proceedings of the National Academy of Sciences, 118(21): e2023709118. Go to original source...
  595. Flégr J. (2009): Evoluční biologie. 2. vyd. Academia, Praha.
  596. Freeland J.R. (2020): Molecular Ecology. 3rd ed. John Wiley & Sons.
  597. Gibert P. et al. (2019): Phenotypic plasticity, global change, and the speed of adaptive evolution. Current Opinion in Insect Science, 35: 34-40. Go to original source...
  598. Liang D. et al. (2020): How to become a generalist species? Individual niche variation across habitat transformation gradients. Frontiers in Ecology & Evolution, 8: 464. Go to original source...
  599. Michalko R., Pekár S. (2017): The behavioral type of a top predator drives the short-term dynamic of intraguild predation. American Naturalist, 189(3): 242-253. Go to original source...
  600. Michalko R., Řežucha R. (2018): Top predator's aggressiveness and mesopredator's risk-aversion additively determine probability of predation. Behavioral Ecology & Sociobiology, 72(7): 1-8. Go to original source...
  601. Murphy S.M. et al. (2020): Predator population size structure alters consumption of prey from epigeic and grazing food webs. Oecologia, 192(3): 791-799. Go to original source...
  602. Olive C.W. (1980): Foraging specialization in orb-weaving spiders. Ecology, 61(5): 1133-1144. Go to original source...
  603. Pekár S. et al. (2022): Ecological specialization and reproductive isolation among closely related sympatric ant-eating spiders. Journal of Animal Ecology, 91(9): 1855-1868. Go to original source...
  604. Pekár S., Raspotnig G. (2022): Defences of Arachnids: diversified arsenal used against range of enemies. Entomologia Generalis, 42(5): 663-679. Go to original source...
  605. Rey O. et al. (2020): Linking epigenetics and biological conservation: Towards a conservation epigenetics perspective. Functional Ecology, 34(2): 414-427. Go to original source...
  606. Robertson B.A. et al. (2013): Ecological novelty and the emergence of evolutionary traps. Trends in Ecology & Evolution, 28(9): 552-560. Go to original source...
  607. Rudolf V.H. (2007): The interaction of cannibalism and omnivory: consequences for community dynamics. Ecology, 88(11): 2697-2705. Go to original source...
  608. Sandoval C.P. (1994): Plasticity in web design in the spider Parawixia bistriata: a response to variable prey type. Functional Ecology, 8: 701-707. Go to original source...
  609. Tkadlec E. (2007): Populační ekologie: struktura, růst a dynamika populací. Univerzita Palackého v Olomouci, Olomouc.
  610. Violle C. et al. (2012): The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27(4): 244-252. Go to original source...
  611. Westneat D. et al. (eds.) (2010): Evolutionary behavioral ecology. Oxford University Press.
  612. Aubinet M. et al. (eds.) (2012): Eddy covariance: A practical guide to measurement and data analysis. Springer Atmospheric Sciences, Springer Verlag. Go to original source...
  613. Burba G. (2022): Eddy covariance method for scientific, regulatory, and commercial applications. LI-COR Biosciences.
  614. Bar-On Y.M. et al. (2018): The biomass distribution on Earth. Biological Sciences, 115(25): 6506-6511. Go to original source...
  615. Błońska E. et al. (2019): Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests. Annals of Forest Science, 76:102. Go to original source...
  616. Bowditch E. et al. (2022): Application of climate-smart forestry. - Forest manager response to the relevance of European definition and indicators. Trees, Forest and People, 9: 100313. Go to original source...
  617. Brang P. et al. (2014): Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry, 87: 492-503. Go to original source...
  618. Bujoczek L. et al. (2021): How much, why and where? Deadwood in forest ecosystems: The case of Poland. Ecological Indicators, 121: 107027. Go to original source...
  619. Černý M. (2005): Use of the growth models of main tree species of the Czech Republic in combination with the data of the Czech National Forest Inventory. In: Neuhöferová P. (ed.): The growth functions in forestry, Korf's growth function and its use in forestry and world reputation. Czech University of Agriculture Prague. Kostelec nad Černými Lesy, Prague.
  620. Cornish R. (2006): Statistics: An introduction to sample size calculations. Mathematics Learning Support Centre.
  621. Cienciala E. et al. (2008): Development of forest carbon stock and wood production in the Czech Republic until 2060. Annals of Forest Science, 65: 603. Go to original source...
  622. Čermák J. et al. (2015): Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands. iForest, 8: 226-278. Go to original source...
  623. Čermák P. et al. (2016): Katalog lesnických a adaptačních opatření. 2016. Mendelova univerzita v Brně.
  624. Dalmonech D. et al. (2022): Feasibility of enhancing carbon sequestration and stock capacity in temperate and boreal European forests via changes to management regimes. Agricultural and Forest Meteorology, 327: 109203. Go to original source...
  625. Halbritter A.H. et al. (2019): The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 11(1): 22-37. Go to original source...
  626. Hetemäki L. et al. (eds.) (2022): Forest bioeconomy and climate change. Springer. Go to original source...
  627. Kuzyakov Y. (2006): Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology & Biochemistry, 38: 425-448. Go to original source...
  628. Körner C.H. (2017): A matter of tree longevity. Science, 355(6321): 130-131. Go to original source...
  629. Robert T.W. et al. (eds.) (2000): Land Use, land-use change and forestry. IPCC, Cambridge University Press, UK.
  630. Penman J. et al. (eds.) (2003): Good practice guidance for land use, land-use change and forestry. IPCC/OECD/IEA/IGES, Hayama, Japan.
  631. Jandl R. et al. (2021): Soil organic carbon stocks in mixed-deciduous and coniferous forests in Austria. Frontiers in Forest and Global Change, 4: 688851. Go to original source...
  632. Kaarakka L. et al. (2021): Improved forest management as a natural climate solution: A review. Ecological Solutions and Evidence, 2: e12090. Go to original source...
  633. Lamlom S.H., Savidge R.A. (2003): A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass and Bioenergy, 25: 381-388. Go to original source...
  634. Lau A. et al. (2019): Tree biomass equations from terrestrial LiDAR: A case study in Guyana. Forests, 10(6): 527. Go to original source...
  635. Lunardini V.J. (1995): Permafrost duration time. CRREL Report.
  636. Lynch J.M., Whipps J.M. (1990): Substrate flow in the rhizosphere. Plant and Soil, 129: 1-10. Go to original source...
  637. Marek V.M. et al. (2011): Uhlík v ekosystémech České republiky v měnícím se klimatu. 1. vydání. Academia, Praha.
  638. Millennium Ecosystem Assessment (2005): Ecosystems and human well-being: Synthesis. Island Press, Washington, DC.
  639. Müller L.J. et al. (2020): A guideline for life cycle assessment of carbon capture and utilization. Frontiers in Energy Research, 8. Go to original source...
  640. Nabuurs G.J. et al. (2013): First signs of carbon sink saturation in European forest biomass. Nature Climate Change, 3: 792-796. Go to original source...
  641. Nabuurs G.J. et al. (2015): A new role for forests and the forest sector in the EU, post-2020 climate targets. From Science to Policy 2. European Forest Institute. Go to original source...
  642. Nave L.E. (2010): Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5): 857-866. Go to original source...
  643. Noormets A. et al. (2015): Effects of forest management on productivity and carbon sequestration: A review and hypothesis. Forest Ecology and Management, 355: 124-140. Go to original source...
  644. Ontl T.A. et al. (2020): Forest management for carbon sequestration and climate adaptation. Journal of Forestry, 118(1): 86-101. Go to original source...
  645. Podivítrová L., Jarský V. (2011): Inovační aktivity v lesním hospodářství České republiky. Zprávy lesnického výzkumu, 56(4): 320-328
  646. Shvidenko A. et al. (2023): A modelling system for dead wood assessment in the forests of Northern Eurasia. Forests, 14(1): 45. Go to original source...
  647. Smith M., Neufeld D. (2023): Visualizing carbon storage in Earth's ecosystems. Dostupné z: https://www.visualcapitalist.com/sp/visualizing-carbon-storage-in-earths-ecosystems/
  648. Svoboda M. (2007): Mrtvé dřevo - přehled dosavadních poznatků. Průběžná zpráva za řešení projektu 2B06012 Management biodiversity v Krkonoších a na Šumavě v roce 2006. Dostupné z: https://www.infodatasys.cz/biodivkrsu/reserseDeadWood.pdf
  649. Tognetti R. et al. (eds.) (2022): Climate-smart forestry in mountains regions. 2022. Managing forest ecosystems. Springer. Go to original source...
  650. Vorster A.G. et al. (2020): Variability and uncertainty in forest biomass. Carbon Balance and Management, 15: 8. Go to original source...
  651. Vrška T. (2018): Nevyhnutelnost principu "3K" v našich lesních rezervacích. 2018. Ochrana přírody, 2.
  652. Vrška T. (2021): Vytváříme pestré lesy pro klimatickou změnu a budoucí generace. Prezentace k Adaptační strategii pro lesy ŠLP ML Křtiny, 9. listopadu 2021.
  653. Wirth C. et al. (2004): Generic biomass functions for Norway spruce in central Europe - a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24: 121-139. Go to original source...
  654. Zianis D. et al. (2005): Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4, Tampere, Finland. Go to original source...
  655. Achat D.L. et al. (2015): Quantifying consequences of removing harvesting residues on forest soils and tree growth-A meta-analysis. Forest Ecology and Management, 348: 124-141. Go to original source...
  656. Becquer A. (2014): From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, 5: 548. Go to original source...
  657. Castro-Rodríguez V. et al. (2017). Molecular fundamentals of nitrogen uptake and transport in trees. Journal of experimental botany, 68(10), 2489-2500. Go to original source...
  658. Jilling A.et al. (2018): Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry, 139: 103-122. Go to original source...
  659. Kuypers M.M. et al. (2018): The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263-276. Go to original source...
  660. Kuzyakov Y., Blagodatskaya E. (2015): Microbial hotspots and hot moments in soil: concept & review. Soil Biology and Biochemistry, 83: 184-199. Go to original source...
  661. Lang F. et al. (2016): Phosphorus in forest ecosystems: new insights from an ecosystem nutrition perspective. Journal of Plant Nutrition and Soil Science, 179(2): 129-135. Go to original source...
  662. Li Y. et al. (2018). Nitrification and nitrifiers in acidic soils. Soil Biology and Biochemistry, I, 290-301. Go to original source...
  663. Ložek V. (2011): Zrcadlo minulosti: česká a slovenská krajina v kvartéru. Dokořán.
  664. Isobe K. et al. (2018). Highly abundant acidophilic ammonia-oxidizing archaea causes high rates of nitrification and nitrate leaching in nitrogen-saturated forest soils. Soil Biology and Biochemistry, 122, 220-227. Go to original source...
  665. Lambers H. et al. (2008): Plant nutrient-acquisition strategies change with soil age. Trends in ecology and evolution, 23(2): 95-103. Go to original source...
  666. Leake J. (2021): Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, 82: 1016-1045. Go to original source...
  667. Penn C.J., Camberato J.J. (2019): A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6): 120. Go to original source...
  668. Phillips R., Leake J. (2013): Networks of power and influence: the role of mycorrhizal mycelium. In: Brzostek E. a Midgley M. G. (eds.): The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 199(1): 41-51. Go to original source...
  669. Reichle D.E. (ed.). (1973). Analysis of temperate forest ecosystems (Vol. 1). Springer Science & Business Media. Go to original source...
  670. Rennenberg H. & Dannenmann M. (2015): Nitrogen nutrition of trees in temperate forests-the significance of nitrogen availability in the pedosphere and atmosphere. Forests, 6(8): 2820-2835. Go to original source...
  671. Rosling A. et al. (2016): Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto-and arbuscular mycorrhizal trees. New Phytologist, 209(3): 1184-1195. Go to original source...
  672. Řezáčová V. et al. (2017): Carbon fluxes in mycorrhizal plants. Mycorrhiza-eco-physiology, secondary metabolites, nanomaterials, 1-21. Go to original source...
  673. Sohrt J. et al. (2017). Quantifying components of the phosphorus cycle in temperate forests. Wiley Interdisciplinary Reviews: Water, 4(6): e1243. Go to original source...
  674. Šimek M., Macková J. (2015): Degradace půdy a emise skleníkových plynů z půd a ze zemědělství-nutné zlo? Nakladatelství Academia.
  675. Talkner U. et al. (2015): Phosphorus nutrition of beech (Fagus sylvatica L.) is decreasing in Europe. Annals of forest science, 72(7), 919-928. Go to original source...
  676. van Der Heijden et al. (2015): Mycorrhizal ecology and evolution: the past, the present, and the future. New phytologist, 205(4), 1406-1423. Go to original source...
  677. Wei J. et al. (2017): N2O and NOx emissions by reactions of nitrite with soil organic matter of a Norway spruce forest. Biogeochemistry, 132: 325-342. Go to original source...
  678. Zhu F. et al. (2019). Uptake patterns of glycine, ammonium, and nitrate differ among four common tree species of northeast China. Frontiers in plant science, 10: 799. Go to original source...
  679. Andreasen M. et al. (2023): Seasonal dynamics of canopy interception loss within a deciduous and a coniferous forest. Hydrological processes, 37(4): e14828. Go to original source...
  680. Beudert B. et al. (2018): Natural disturbance by bark beetle offsets climate change effects on streamflow in headwater catchments of the Bohemian Forest. Silva Gabreta, 24: 21-45.
  681. Brázdil R. et al. (2021): Observed changes in precipitation during recent warming: The Czech Republic, 1961-2019. International Journal of Climatology, 41: 3881-3902. Go to original source...
  682. Daňhelka J. (ed.) (2019): Sucho 2014-2018. Sborník abstraktů semináře. Český hydrometeorologický ústav, Praha.
  683. Fendeková M. (2018): Analysing 21st century meteorological and hydrological drought events in Slovakia. Journal of Hydrology and Hydromechanics, 66: 393-403. Go to original source...
  684. Gerrits A.M.J. et al. (2010): Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrological Processes, 24: 3011-3025. Go to original source...
  685. Jasechko S. et al. (2013): Terrestrial water fluxes dominated by transpiration. Nature, 496: 347-350. Go to original source...
  686. Kantor P. (1989): Transpirace smrkových a bukových porostů. Vodohospodárský časopis, 37 (2): 222-237.
  687. Kantor P. (1990): Základní vazby celkového výparu a odtoku vody ze smrkových a bukových lesů. Vodohospodárský časopis, 38 (3): 327-348.
  688. Kopáček J. et al. (2020). Changes in microclimate and hydrology in an unmanaged mountain forest catchment after insect-induced tree dieback. Science of The Total Environment, 720: 137518. Go to original source...
  689. Lamačová A. et al. (2018): Modelling future hydrological pattern in a Bohemian Forest headwater catchment. Silva Gabreta, 24: 47-67.
  690. Oreňák M. et al. (2014): Vplyv bylinnej složky (Vaccinium myrtillus, Rubus idaeus) na celkový intercepčný proces horskej smrečiny v Západných Tatrách. Pp.: 343-351. In: Brych K., Tesař M. (eds.): Hydrologie malého povodí 2014. Sborník konference. Ústav pro hydrodynamiku AVČR, Praha.
  691. Oulehle F. et al. (2017): Recovery from acidification alters concentrations and fluxes of solutes from Czech catchments. Biogeochemistry, 132: 251-272. Go to original source...
  692. Pretzsch H. et al. (2014): Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees, 28: 1305-1321. Go to original source...
  693. Šach F., Černohous V. (2016): Lesní odtokové plochy a malá povodí s experimenty těžby dřeva ve vazbě na jejich vodnost. Zprávy lesnického výzkumu, 61: 54-65.
  694. Štěpánek P. et al. (2019): Očekávané klimatické podmínky v České republice. Část I. Změna základních parametrů. Výzkumná zpráva, Ústav výzkumu globální změny AV ČR.
  695. Trnka M. (2019): Zemědělské sucho v kontextu změny klimatu. In: Daňhelka J. (ed.) Sucho 2014-2018. ČHMÚ, Praha.
  696. Ward R.C., Robinson M. (1990): Principles of hydrology. 3rd edition. McGraw-Hill Book Company, London.
  697. Zhang Y. et al. (2023): Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 6: 19124. Go to original source...
  698. Adams M. A. (2013): Mega-fires, tipping points and ecosystem services: Managing forests and woodlands in an uncertain future. Forest Ecology and Management, 294: 250-261. Go to original source...
  699. Bendixsen D.P. et al. (2015): Stress factors associated with forest decline in xeric oak forests of south-central United States. Forest Ecology and Management, 347: 40-48. Go to original source...
  700. Bücking H. et al. (2016): Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Communicative & Integrative Biology, 9(1): e1107684. Go to original source...
  701. De Mazancourt C. et al. (2013). Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 16(5): 617-625. Go to original source...
  702. Dijkstra F.A. et al. (2007): Plant diversity, CO2, and N influence inorganic and organic N leaching in grasslands. Ecology, 88(2): 490-500. Go to original source...
  703. Klein T. et al. (2016): Belowground carbon trade among tall trees in a temperate forest. Science, 352(6283): 342-344. Go to original source...
  704. Liang J. et al. (2016): Positive biodiversity-productivity relationship predominant in global forests. Science, 354(6309): aaf8957. Go to original source...
  705. Lilleskov E.A. (2019): Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environmental Pollution, 246: 148-162. Go to original source...
  706. Loreau M. (2010): From populations to ecosystems. Princeton University Press. Go to original source...
  707. Loreau M., De Mazancourt C. (2013): Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 16: 106-115. Go to original source...
  708. Machar I. et al. (2017): Modelling of climate conditions in forest vegetation zones as a support tool for forest management strategy in European beech dominated forests. Forests, 8(3): 82. Go to original source...
  709. Metz J. et al. (2016): Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Global Change Biology, 22(2): 903-920. Go to original source...
  710. Mikita T. et al. (2016): Modelování podmínek pro pěstování smrku, buku a dubu. Frameadapt.
  711. Mittelbach G. G., McGill B.J. (2019): Community ecology. Oxford University Press. Go to original source...
  712. Molina R., Horton T.R. (2015): Mycorrhiza specificity: its role in the development and function of common mycelial networks. Mycorrhizal networks: 1-39. Go to original source...
  713. Mölder I., Leuschner C. (2014): European beech grows better and is less drought sensitive in mixed than in pure stands: tree neighbourhood effects on radial increment. Trees, 28: 777-792. Go to original source...
  714. Morin X. et al. (2011): Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters, 14(12): 1211-1219. Go to original source...
  715. Morin X. et al. (2014): Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecology Letters, 17(12): 1526-1535. Go to original source...
  716. Oelmann Y. et al. (2007): Soil and plant nitrogen pools as related to plant diversity in an experimental grassland. Soil Science Society of America Journal, 71(3): 720-729. Go to original source...
  717. Pretzsch H., Schütze G. (2009): Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. European Journal of Forest Research, 128: 183-204. Go to original source...
  718. Pretzsch Hans (2013): Facilitation and competition in mixed-species forests analyzed along an ecological gradient. Nova Acta Leopoldina, 114(391): 159-174.
  719. Simard S. et al. (2015): Resource transfer between plants through ectomycorrhizal fungal networks. Pp. 133-176. In: Horton T. (ed.): Mycorrhizal Networks. Springer, Dordrecht. Go to original source...
  720. Simard S. (2018): Mycorrhizal networks facilitate tree communication, learning, and memory. Pp. 191-213. In: Baluska F. et al. (eds.): Memory and Learning in Plants. Signaling and Communication in Plants. Springer, Cham. Go to original source...
  721. Steckel M. et al. (2020): Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) - Site water supply and fertility modify the mixing effect. Forest Ecology and Management, 461: 117908. Go to original source...
  722. Tedersoo L. (2020): How mycorrhizal associations drive plant population and community biology. Science, 367(6480): eaba1223. Go to original source...
  723. Teste F.P. et al. (2009): Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology, 90(10): 2808-2822. Go to original source...
  724. Thurm E.A. et al. (2016): Mixture reduces climate sensitivity of Douglas-fir stem growth. Forest Ecology and Management, 376: 205-220. Go to original source...
  725. del Rio M. (2014): Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biology, 16: 166-176. Go to original source...
  726. Walder F. et al. (2012): Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiology, 159(2): 789-797. Go to original source...
  727. Abatzoglou J.T., Williams A.P. (2016): Impact of anthropogenic climate change on wildfire across western US forests. PNAS, 113: 11770-11775. Go to original source...
  728. Alkama R. te al. (2022ú: Vegetation-based climate mitigation in a warmer and greener World. Nature Communications, 13: 606. Go to original source...
  729. Anderegg W.R.L. et al. (2020): Climate-driven risks to the climate mitigation potential of forests. Science, 368: eaaz7005. Go to original source...
  730. Anderegg W.R.L. et al. (2022): Future climate risks from stress, insects and fire across US forests. Ecology Letters, 25: 1510-1520. Go to original source...
  731. Anderegg, W.R.L et al. Et al. (2022): A climate risk analysis of Earth's forests in the 21st century. Science, 377: 1099-1103. Go to original source...
  732. Allen C.D. et al. (2010): A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology Management, 259(4): 660-684. Go to original source...
  733. Allen C.D. et al. (2015): On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6(8):129. Go to original source...
  734. Baerbel H. (2021): Paleo-CO2 data archive (Version 1) [Data set]. Zenodo. Dostupné z: https://doi.org/10.5281/zenodo.5777278 Go to original source...
  735. Bauman D. et al. (2022): Tropical tree mortality has increased with rising atmospheric water stress. Nature, 608: 528-533. Go to original source...
  736. Barriopedro D. et al. (2010): The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332: 220-224. Go to original source...
  737. Bastos A. et al. (2020): Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Philosophical Transactions of the Royal Society B, 375: 20190507. Go to original source...
  738. Beugnon R. et al. (2022): Diverse forests are cool: promoting diverse forests to mitigate carbon emissions and climate change. Journal of Sustainable Agriculture and Environment, 1: 5- 8. Go to original source...
  739. Booth B.B.B. et al. (2012): High sensitivity of future global warming to land carbon cycle processes. Environmental Resesearch Letters, 7: 024002. Go to original source...
  740. Boulton C.A. et al. (2022): Pronounced loss of Amazon rainforest resilience since the early 2000s. Nature Climate Change, 12: 271-278. Go to original source...
  741. Bowditch E. et al. (2020): What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosystem Services, 43: 101113. Go to original source...
  742. Bowman D.M.J.S. et al. (2020): Vegetation fires in the Anthropocene. Nature Reviews Earth and Environment, 1: 500-515. Go to original source...
  743. Bowman D.M.J.S. et al. (2021): Australian forests, megafires and the risk of dwindling carbon stocks. Plant Cell and Environment, 44: 347- 355. Go to original source...
  744. Brodribb TJ. et al. (2020): Hanging by a thread? Forests and drought. Science, 368: 261-266. Go to original source...
  745. Burke K.D. et al. (2018): Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences, 115: 13288-13293. Go to original source...
  746. Cabon A. et al. (2022): Cross-biome synthesis of source versus sink limits to tree growth. Science, 376: 758-761. Go to original source...
  747. Canadell J.G. et al. (2021): Multi-decadal increase of forest burned area in Australia is linked to climate change. Nature Communications: 12: 6921. Go to original source...
  748. Canadell J.G., Jackson R.B. (eds.) (2021): Ecosystem collapse and climate change. Springer Cham. Go to original source...
  749. del Castillo M. et al. (2022): Climate-change-driven growth decline of European beech forests. Communications Biology, 5: 163. Go to original source...
  750. Ciais P. et al. (2005): Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437: 529-533. Go to original source...
  751. Copernicus. (2022): Dostupné z: https://climate.copernicus.eu/surface-air-temperature-august-2022
  752. Copernicus. (2022): Dostupné z: https://atmosphere.copernicus.eu/europes-summer-wildfire-emissions-highest-15-years
  753. Dannenberg M.P. et al. (2022): Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought. Global Change Biology, 28: 4794- 4806. Go to original source...
  754. Dhar A. et al. (2022): Aftermath of mountain pine beetle outbreak in British Columbia: Stand dynamics, management response and ecosystem resilience. Forests, 7(8): 171. Go to original source...
  755. Doelman J.C., Stehfest E. (2022): The risks of overstating the climate benefits of ecosystem restoration. Nature, 609: E1-E3. Go to original source...
  756. Dow C. et al. (2022): Warm springs alter timing but not total growth of temperate deciduous trees. Nature, 608: 552-557. Go to original source...
  757. Duffy K.A. et al. (2021): How close are we to the temperature tipping point of the terrestrial biosphere? Science Advances, 7: eaay1052. Go to original source...
  758. FAO (2022): The State of the World's Forests 2022. Forest pathways for green recovery and building inclusive, resilient and sustainable economies. FAO, Rome.
  759. FAO. (2022). Nadzemní biomasa, interaktivní mapa. Dostupné z: https://data.apps.fao.org/catalog/dataset/above-ground-biomass-in-forest-ag_lnd_frstbiopha/resource/9a82eeec-36c9-4a44-b58f-f3f7063b77c3
  760. Feng Y. et al. (2022): Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nature Sustainability, 5: 444-451. Go to original source...
  761. Fleischer K. (2019): Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 12: 736-741. Go to original source...
  762. Friedlingstein P. et al. (2022): Global carbon budget 2021. Earth System Science Data, 14(4): 1917-2005. Go to original source...
  763. Gregow H. et al. (2017): Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951-2010. Scientific Reports, 7: 46397. Go to original source...
  764. Global Carbon Project (2022): Dostupné z: https://www.globalcarbonproject.org/
  765. Hammond W.M. et al. (2022): Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. Nature Communications, 13: 1761. Go to original source...
  766. Hanewinkel M. et al. (2013): Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3: 203-207. Go to original source...
  767. Hansen J. et al. (2013): Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A, 371: 20120294. Go to original source...
  768. Hantemirov R.M. et al. (2022): Current Siberian heating is unprecedented during the past seven millennia. Nature Communications, 13: 4968. Go to original source...
  769. Harris N.L. et al. (2021): Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 11: 234-240. Go to original source...
  770. Hartmann H. et al. (2022): Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73(1): 673-702. Go to original source...
  771. Houghton R.A. (2005): Aboveground forest biomass and the global carbon balance. Global Change Biology, 11: 945-958. Go to original source...
  772. Hubau W. et al. (2020): Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579: 80-87. Go to original source...
  773. IPCC (2013): Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.
  774. IPPC Secretariat (2021): Scientific review of the impact of climate change on plant pests - A global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. FAO on behalf of the IPPC Secretariat, Rome.
  775. Jackson R.B. et al. (2008): Protecting climate with forests. Environmental Research Letters, 3(4): 044006. Go to original source...
  776. Jactel H. et al. (2019): Responses of forest insect pests to climate change: not so simple. Current Opinion in Insect Science, 35: 103-108. Go to original source...
  777. Jandl R. et al. (2019): Forest adaptation to climate change-is non-management an option? Annals of Forest Science: 76: 48. Go to original source...
  778. Jolly W. et al. (2015): Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6: 7537. Go to original source...
  779. Kampf S.K. et al. (2022): Increasing wildfire impacts on snowpack in the western U.S. PNAS, 119(39): e2200333119. Go to original source...
  780. Kender S. et al. (2021): Paleocene/Eocene carbon feedbacks triggered by volcanic activity. Nature Communications, 12: 5186. Go to original source...
  781. Kelly R. et al. (2013): Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. PNAS, 110(32): 13055-13060. Go to original source...
  782. Lawrence D. et al. (2022): The unseen effects of deforestation: Biophysical effects on climate. Frontiers in Forests and Global Change, 5: 756115 Go to original source...
  783. Lehmann F. et al. (2020): Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 18(3): 141-150. Go to original source...
  784. Lesk C. et al. (2017): Threats to North American forests from southern pine beetle with warming winters. Nature Climate Change, 7: 713-717. Go to original source...
  785. Lüthi D. et al. (2008): High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, 453: 379-382. Go to original source...
  786. Luyssaert S. et al. (2008): Old-growth forests as global carbon sinks. Nature, 455: 213-215. Go to original source...
  787. Mack M.C. et al. (2021): Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science, 372: 280-283. Go to original source...
  788. Markonis Y. et al. The rise of compound warm-season droughts in Europe. Science Advances, 7: eabb9668.
  789. Marcott S.A. et al. (2013): A reconstruction of regional and global temperature for the past 11,300 years. Science, 339: 1198-1201. Go to original source...
  790. Matusick G. et al. (2018): Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought. Environmental Research Letters, 13: 095002. Go to original source...
  791. McDowell N.G. et al. (2020): Pervasive shifts in forest dynamics in a changing world. Science, 368: eaaz9463. Go to original source...
  792. McKay D.A. et al. (2022): Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 377: eabn7950. Go to original source...
  793. Morice C.P. et al. (2021): An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set. Journal of Geophysical Research: Atmospheres, 126: e2019JD032361. Go to original source...
  794. Norris J. et al. (2016): Evidence for climate change in the satellite cloud record. Nature, 536:0 72-75. Go to original source...
  795. Pan et al. (2013): The structure, distribution, and biomass of the world's forests. The Annual Review of Ecology, Evolution, and Systematics, 44: 593-622. Go to original source...
  796. Peng C. et al. (2011): A drought-induced pervasive increase in tree mortality across Canada>s boreal forests. Nature Climate Change, 1: 467-471. Go to original source...
  797. Peñuelas J. et al. (2017): Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution, 1, 1438-1445. Go to original source...
  798. Pozner E. et al. (2022): A hidden mechanism of forest loss under climate change: The role of drought in eliminating forest regeneration at the edge of its distribution. Forest Ecology and Management, 506: 119966. Go to original source...
  799. Quaas J. et al. (2022): Robust evidence for reversal of the trend in aerosol effective climate forcing. Atmospheric Chemistry and Physics, 22: 12221-12239. Go to original source...
  800. Quirion B.R. et al. (2021): Insect and disease disturbances correlate with reduced carbon sequestration in forests of the contiguous United States. Frontiers in Forests and Global Change, 4: 716582. Go to original source...
  801. Rammer W. et al. (2021): Widespread regeneration failure in forests of Greater Yellowstone under scenarios of future climate and fire. Global Change Biology, 27: 4339- 4351. Go to original source...
  802. Reich P.B. et al. (2022): Even modest climate change may lead to major transitions in boreal forests. Nature, 608: 540-545. Go to original source...
  803. Reichstein M. et al. (2007): Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13: 634- 651. Go to original source...
  804. Reichstein, M., Bahn, M., Ciais, P. et al. Climate extremes and the carbon cycle. Nature 500, 287-295 (2013). Go to original source...
  805. Rivers M. et al. (2022): Scientists' warning to humanity on tree extinctions. Frontiers in Forests and Global Change, 4: 716582. Go to original source...
  806. Rohatyn S. et al. (2022): Limited climate change mitigation potential through forestation of the vast dryland regions. Science, 377: 1436-1439. Go to original source...
  807. Sanderson B.M., Fisher R.A. (2020): A fiery wake-up call for climate science. Nature Climate Change, 10: 175-177. Go to original source...
  808. Shah J. et al. (2022): Increasing footprint of climate warming on flash droughts occurrence in Europe. Environmental Research Letter, 17(6): 064017. Go to original source...
  809. Shakun J. et al. (2012): Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484: 49-54. Go to original source...
  810. Sherwood S. C. et al. (2020): An assessment of Earth>s climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58: e2019RG000678. Go to original source...
  811. Stevens-Rumann C.S. et al. (2018): Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21: 243-252. Go to original source...
  812. Tyukavina A. et al. (2022): Global trends of forest loss due to fire from 2001 to 2019. Frontiers in Remote Sensing, 3: 825190. Go to original source...
  813. van der Velde I.R. et al. (2021): Vast CO2 release from Australian fires in 2019-2020 constrained by satellite. Nature, 597, 366-369. Go to original source...
  814. van Mantgem P.J. et al. (2009): Widespread increase of tree mortality rates in the western United States. Science, 323: 521-524. Go to original source...
  815. van Wees D. et al. (2021): The role of fire in global forest loss dynamics. Global Change Biology, 27: 2377-2391. Go to original source...
  816. Vizzarri M. et al. (2022): The Role of Forests in Climate Change Mitigation: The EU Context. Pp. 507-520. In: Tognetti R. et al. (eds.): Climate-Smart Forestry in Mountain Regions. Managing Forest Ecosystems, vol 40, Springer, Cham. Go to original source...
  817. Westerhold T. et al. (2020): An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369: 1383-1387. Go to original source...
  818. Wang S. et al. (2020): Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370: 1295-1300. Go to original source...
  819. Waters C.N. et al. (2016): The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351: aad2622(2016).
  820. Wiens J.J. (2016): Climate-related local extinctions are already widespread among plant and animal species. PLoS Biology, 14(12): e2001104. Go to original source...
  821. Williams P. et al. (2013): Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3: 292-297. Go to original source...
  822. Winkler A.J. (2021): Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2, Biogeosciences, 18(17): 4985-5010. Go to original source...
  823. World Resource Institute (2022): Dostupné z: https://www.wri.org/insights/global-trends-forest-fires
  824. Xu L. et al. (2021): Changes in global terrestrial live biomass over the 21st century. Science Advances, 7: eabe9829. Go to original source...
  825. Yi C. et al. (2022): Tree mortality in a warming world: causes, patterns, and implications. Environmental Research Letters, 17: 030201. Go to original source...
  826. Yuan W. et al. (2019): Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5: eaax1396. Go to original source...
  827. Zeebe R. et al. (2016): Anthropogenic carbon release rate unprecedented during the past 66 million years. Nature Geoscience, 9: 325-329. Go to original source...
  828. Zhu Z. et al. (2016): Greening of the Earth and its drivers. Nature Climate Change, 6: 791-795. Go to original source...
  829. Boisvenue C., Running S.W. (2006): Impacts of climate change on natural forest productivity - evidence since the middle of the 20th century. Global Change Biology, 12(5): 862-882. Go to original source...
  830. Buček A., Lacina J. (1999): Geobiocenologie II. Mendelova zemědělská a lesnická univerzita Brno.
  831. Cílek V. et al. (eds.) (2022): Český a moravský les. Dokořán s.r.o.
  832. Čermák P. et al. (2016): Katalog lesnických adaptačních opatření. Mendelova univerzita v Brně, Brno, Praha.
  833. Fanta J., Petřík P. (eds.) (2021): Jiné klima - jiný les. Academia.
  834. Hanewinkel M. et al. (2013): Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3: 203-207. Go to original source...
  835. Johnston M., Hesseln H. (2012): Climate change adaptive capacity of the Canadian forest sector. Forest Policy and Economics, 24: 29-34. Go to original source...
  836. Jourdan M. et al. (2021): Managing mixed stands can mitigate severe climate change impacts on French alpine forests. Regional Environmental Change, 21: 78 Go to original source...
  837. Klimetzek D., Pelz D.R. (1992): Nest counts versus trapping in ant surveys: influence on diversity. Pp. 171-179. In: Billen J. (ed.) Biology and evolution of social insects. Leuven University Press, Leuven.
  838. Kopecká V., Buček A. (1999): Modelování možných důsledků globálních klimatických změn na území České republiky. Agentura ochrany přírody a krajiny ČR, Mendelova zemědělská a lesnická univerzita, Praha, Brno.
  839. Král K. et al. (2010): Developmental phases in a temperate natural spruce-fir-beech forest: determination by a supervised classification method. European Journal of Forest Research, 129(3): 339-351. Go to original source...
  840. Krejza J. et al. (2021): Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 35: 103-119. Go to original source...
  841. Lai Y.-J. (2020): Climate classification of Asian university forests under current and future climate. Journal of Forest Research, 25(3):136-146. Go to original source...
  842. Luo Y. et al. (1999): A search for pre- dictive understanding of plant responses to elevated CO2. Global Change Biology, 5: 143-156. Go to original source...
  843. Marek M.V. et al. (2011): Uhlík v ekosystémech České republiky v měnícím se klimatu. Academia, Praha.
  844. Mette T. et al. (2021): Climate analogues for temperate European forests to raise silvicultural evidence using twin regions. Sustainability, 13(12): 6522. Go to original source...
  845. Mikita T. et al. (2016): Modelování podmínek pro pěstování smrku, buku a dubu. Frameadapt.
  846. Min S.K. (2011): Human contribution to more-intense precipitation extremes. Nature, 470: 378-381. Go to original source...
  847. Nazarenko L. et al. (2015): Future climate change under RCP emission scenarios with GISS ModelE2. Journal of Advances in Modeling Earth Systems, 7(1): 244-267. Go to original source...
  848. Pachauri R.K. et al. (2014): Climate change 2014: synthesis report. Contribution of Working Groups I. II and III to the FIFA assessment report of the Intergovernmental Panel on Climate Change, IPCC.
  849. Plíva K. (1987): Typologický klasifikační systém ÚHÚL. ÚHÚL, Brandýs nad Labem.
  850. Rotter P. et al. (2021): Lesníkův průvodce neklidnými časy. Lesnická práce, Kostelec nad Černými lesy.
  851. Salomón R.L. et al. (2022): The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 13: 28. Go to original source...
  852. Slodičák M.. Novák J. (2007): Výchova lesních porostů hlavních hospodářských dřevin. Výzkumný ústav lesního hospodářství a myslivosti, Jíloviště-Strnady.
  853. Steinhilber F. et al. (2012): 9,400 years of osmic radiation and solar activity from ice cores and tree rings. Earth, Atmospheric and Planetary Sciences, 109(16): 5967-5971. Go to original source...
  854. Špunda V. et al. (2005): Diurnal dynamics of photosynthetic parameters of Norway spruce trees cultivated under ambient and elevated CO2: the reasons of midday depression in CO2 assimilation. Plant Science, 168: 1371-1381. Go to original source...
  855. Štěpánek P. et al. (2019): Očekávané klimatické podmínky v České republice část I- Změna základních parametrů. Ústav výzkumu globální změny, Akademie věd ČR, Brno.
  856. Thurm E.A. et al. (2018): Alternative tree species under climate warming in managed European forests. Forest Ecology and Management, 430: 485-497. Go to original source...
  857. Urban O. (2003): Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica, 41(1): 9-20. Go to original source...
  858. Zhan X. (2013): Attributing intensification of precipitation extremes to human influence. Geophysical Reseacrh Letters, 40: 5252-5257. Go to original source...
  859. Zweifel R. et al. (2021): TreeNet-The biological drought and growth indicator network. Frontiers in Forest and Global Change: 4. Go to original source...
  860. Butin H. (1995): Tree diseases and disorders. Cause, biology and control in forest and amenity trees. Oxford university press, Oxford. Go to original source...
  861. Čapek M. et al. (1985): Hromadné hynutie dubov na Slovensku. Príroda, Bratislava.
  862. Čermák P. et al. (2014): Ochrana dřevin - obecná ochrana, abiotické a antropogenní stresory. Mendelova univerzita v Brně, Brno.
  863. Čermák P. et al. (2019): Mitigace a adaptace v hospodaření s dřevinnými porosty - východiska, současný stav realizace, blízké výhledy. Mendelova univerzita v Brně, Brno.
  864. Čermák P. et al. (2016): Katalog lesnických adaptačních opatření. MENDELU, ČZU, IFER, NIBIO.
  865. Durstbeger T. et al. (2008): The foliar uptake of micronutrients. Acta Horticulturae, 804: 631-637. Go to original source...
  866. Hartmann G. et al. (2001): Atlas poškození lesních dřevin. Nakladatelství Brázda, Praha.
  867. Chown S.L., Nicolson S.W. (2004): Insect Physiological Ecology: Mechanisms and Patterns. Oxford University Press, New York. Go to original source...
  868. Jakuš R. et al. (2015): Hodnotenie zdravotného stavu smreka vo vzťahu k náletu podkôrneho hmyzu a k odumieraniu lesa. Ústav ekológie lesa, Slovenská akadémia vied.
  869. Kreuter M.L. (2002): Biologická ochrana rostlin. Rebo Productions, Praha.
  870. Křístek J., Urban J. (2004): Lesnická entomologie. Academia, Praha.
  871. Stanturf J.A. et al. (eds.). (2012): Forest landscape restoration: integrating natural and social sciences. Springer, Dordrecht. Go to original source...
  872. Uhlířová H., Kapitola P. (2004): Poškození lesních dřevin. Lesnická práce, Praha.
  873. Zahradník P. (ed.) 2014: Metodická příručka integrované ochrany rostlin pro lesní porosty. Lesnická práce, Kostelec nad Černými lesy.
  874. Zahradník J., Severa F. (2004): Hmyz. Aventinum, Praha.
  875. Zahradníková M., Zahradník P. (2022): Metodická příručka integrované ochrany rostlin pro lesní porosty. Příloha 1: Seznam povolených přípravků a dalších prostředků na ochranu lesa.: Lesnická práce, Kostelec nad Černými lesy.
  876. Arnolds E. (1991): Decline of ectomycorrhizal fungi in Europe. Agriculture, Ecosystems & Environment, 35: 209-244. Go to original source...
  877. Bal T.L. et al. (2015): Nutrient stress predisposes and contributes to sugar maple dieback across its northern range: a review. Forestry, 88(1): 64-83. Go to original source...
  878. Batysta M. (2011): Interakce půda-rostlina z hlediska transportu prvků v prostředí lesních půd ovlivněných acidifikací. Česká zemědělská univerzita v Praze, Praha.
  879. Bobbink R., Hettelingh J.P. (2010): Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout, 2325.
  880. Bobbink R. et al. (eds.) (2022): Review and revision of empirical critical loads of nitrogen for Europe. German Environmental Agency.
  881. Borůvka L. et al. (2007): Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma, 140: 374-382. Go to original source...
  882. Borken W., Matzner E. (2004): Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany. Journal of Plant Nutrition and Soil Science, 167: 277-283. Go to original source...
  883. Braun S. et al. (2017): Growth trends of beech and Norway spruce in Switzerland: The role of nitrogen deposition, ozone, mineral nutrition and climate. Science of the Total Environment, 599: 637-646. Go to original source...
  884. Braun S. et al. (2020): Foliar nutrient concentrations of European beech in Switzerland: relations with nitrogen deposition, ozone, climate and soil chemistry. Frontiers in Forests and Global Change, 3: 1-15. Go to original source...
  885. Braun S. et al. (2022): Effects of nitrogen deposition on forests and other wooded land (EUNIS class T, formerly G). In: Bobbink R. et al. (eds.): Review and revision of empirical critical loads of nitrogen for Europe. German Environmental Agency.
  886. Braun S., et al (2022b). Epidemiological estimate of growth reduction by ozone in Fagus sylvatica L. and Picea abies Karst: sensitivity analysis and comparison with experimental results. Plants, 11: 777. Go to original source...
  887. Brown N. et al. (2018): Predisposition of forests to biotic disturbance: Predicting the distribution of Acute Oak Decline using environmental factors. Forest Ecology and Management, 407: 145-154. Go to original source...
  888. Brunner I., Sperisen C. (2013): Aluminum exclusion and aluminum tolerance in woody plants. Frontiers in Plant Science, 4: 172. Go to original source...
  889. Carter T. S. et al. (2017): Mechanisms of nitrogen deposition effects on temperate forest lichens and trees. Ecosphere, 8(3): e01717. Go to original source...
  890. Cienciala E. et al. (2017). Recent spruce decline with biotic pathogen infestation as a result of interacting climate, deposition and soil variables. European Journal of Forest Research, 136: 307-317. Go to original source...
  891. Choma M. et al. (2017): Recovery of the ectomycorrhizal community after termination of long-term nitrogen fertilisation of a boreal Norway spruce forest. Fungal Ecology, 29: 116-122. Go to original source...
  892. DeForest J.L. (2004): Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology and Biochemistry, 36: 965-971. Go to original source...
  893. De Witte L.C. et al. (2017): Nitrogen deposition changes ectomycorrhizal communities in Swiss beech forests. Science of the Total Environment, 605-606: 1083-1096. Go to original source...
  894. Holuša J. et al. (2018). Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. Forest Ecology and Management, 427: 434-445. Go to original source...
  895. Hůnová I. et al. (2016): Towards a better spatial quantification of nitrogen deposition: A case study for Czech forests. Environmental Pollution, 213: 1028-1041. Go to original source...
  896. Hůnová I. et al. (2018): Zpřesnění kvantifikace atmosférické depozice dusíku. Výzkumná zpráva DKRVO. Technický dokument TD000104. Praha: ČHMÚ.
  897. Hůnová I. et al. (2021): Jak se změnila atmosférická depozice síry a dusíku v našich lesích za poslední čtvrtstoletí? Meterologické zprávy, 74: 168-172.
  898. Hruška J. et al. (2009): Účinky kyselého deště na lesní a vodní ekosystémy 2. Vliv depozic síry a dusíku na půdy a lesy. Živa, 3: 141-144.
  899. Janssens I. A. et al. (2010): Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3: 315-322. Go to original source...
  900. Jarvis S. et al. (2013): Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine. Global Change Biology, 19: 1688-1696. Go to original source...
  901. Jönsson A.M. et al. (2004): Frost sensitivity and nutrient status in a fertilized Norway spruce stand in Denmark. Forest Ecology and Management, 201: 199-209. Go to original source...
  902. Jones M.E. et al. (2004): Influence of ozone and nitrogen deposition on bark beetle activity under drought conditions. Forest Ecology and Management, 200(1-3): 67-76. Go to original source...
  903. Kassymov A. et al. (2021): Znečišťování ovzduší. Pp. 19-24. In: Škáchová H., Vlasáková L.: Znečištění ovzduší na území České republiky v roce 2020. ČHMÚ, Praha.
  904. Kidd P.S., Proctor J. (2000): Effects of aluminium on the growth and mineral composition of Betula pendula Roth. Journal of Experimental Botany, 51(347): 1057-1066. Go to original source...
  905. Lilleskov E.A. et al. (2019): Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: A review. Environmental Pollution, 246: 148-162. Go to original source...
  906. Matzner E., Murach D. (1995): Soil changes induced by air pollutant deposition and their implication for forests in Central Europe. Water Air and Soil Pollution, 85: 63-76. Go to original source...
  907. Meining S.V. et al. (2008): Waldzustandsbericht der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (FVA), Freib. Forsch.
  908. Nellemann C., Thomsen M.G. (2001): Long-term changes in forest growth: potential effects of nitrogen deposition and acidification. Water, Air, and Soil Pollution, 128: 197-205. Go to original source...
  909. Novotný R. et al. (2020): Monitoring of forests indicates decrease of important elements in tree nutrition of main tree species across the Czech Republic and Slovakia over the long term. Journal of Environmental Science and Engineering, 9: 39-55. Go to original source...
  910. Oulehle F. et al. (2017): Recovery from acidification alters concentrations and fluxes of solutes from Czech catchments. Biogeochemistry, 132: 251-272. Go to original source...
  911. Peng Y.F. et al. (2019): Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective. Plant and Soil, 436: 245-252. Go to original source...
  912. Perkins T.D. et al. (1999): Long-term nitrogen fertilization increases winter injury in montane Red Spruce (Picea rubens) foliage. Journal of Sustainable Forestry, 10: 165-172. Go to original source...
  913. Rotter P. et al. (2020): Why do forests respond differently to nitrogen deposition? A modelling approach. Ecological Modelling, 425: 109034. Go to original source...
  914. Rotter P. et al. (2021): Lesníkův průvodce neklidnými časy. Lesnická práce, Kostelec nad Černými lesy, VÚKOZ.
  915. Růžek M. et al. (2019): Input-output budgets of nutrients in adjacent Norway spruce and European beech monocultures recovering from acidification. Forests, 10(1): 68. Go to original source...
  916. Schmidt M. et al. (2015): Tree species diversity effects on productivity, soil nutrient availability and nutrient response efficiency in a temperate deciduous forest. Forest Ecology and Management, 338: 114-123. Go to original source...
  917. Šrámek V. et al. (2021): Doporučené metody nakládání s těžebními zbytky v lesních porostech s významnou produkční funkcí z hlediska udržitelnosti bilance hlavních živin: certifikovaná metodika. Výzkumný ústav lesního hospodářství a myslivosti, Strnady.
  918. Van der Linde S. et al. (2018): Environment and host as large-scale controls of ectomycorrhizal fungi. Nature, 558: 243-248. Go to original source...
  919. Van Strien A.J. et al. (2018): Woodland ectomycorrhizal fungi benefit from large-scale reduction in nitrogen deposition in the Netherlands. Journal of Applied Ecology, 55: 290-298. Go to original source...
  920. Vrubel J. et al. (2009): Návrh nového systému kompenzace imisních škod vlastníkům lesa. Ekotoxa, Brno-Opava.
  921. Waldner P. (2015): Exceedance of critical loads and of critical limits impacts tree nutrition across Europe. Annals of Forest Science, 72(7): 929-939. Go to original source...
  922. Zhang H. et al. (2020): Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Science of the Total Environment, 732: 139295. Go to original source...
  923. Zechmeister-Boltenstern S. et al. (2011): Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition. Plant and Soil, 343: 37-50. Go to original source...