Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2023, 167(1):36-42 | DOI: 10.5507/bp.2022.005

Detection of galanin receptors in the spinal cord in experimental autoimmune encephalomyelitis

Danica Michalickova1, Ivana Kramarikova1, Hatice Kubra Ozturk1, Tomas Kucera2, Tomas Vacik3, Tomas Hrncir4, Nikolina Kutinova Canova1, Martin Sima1, Ondrej Slanar1
1 Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
2 Institute of Histology and Embryology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
3 Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
4 Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic

Aims: The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The aims of the present study were to investigate the expression of galanin receptors (GalR1, GalR2, GalR3) in the spinal cords in a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) using qPCR analysis and to determine GalR1 cellular localization (oligodendrocytes, microglia, astrocytes, ependymal cells, and endothelial cells in the capillaries) by immunohistochemistry.

Methods: Twelve samples from the EAE group and 14 samples from the control group were analyzed. Spinal cords samples were obtained at the peak of the EAE disease.

Results: The GalR1 mRNA level was significantly decreased in the EAE mice compared with the controls (P=0.016), whereas the mRNA levels of GalR2 and GalR3 were not significantly different for the EAE and the control mice. No significant correlations were found between the severity of the EAE disease and the mRNA levels of GalR1, GalR2 and GalR3. Immunochemical detection of the GalR1 revealed its expression in the ependymal and endothelial cells. Additionally, a weak GalR1 immunoreactivity was occasionally detected in the oligodendrocytes.

Conclusion: This study provides additional evidence of galanin involvement in EAE pathophysiology, but this has to be further investigated.

Keywords: multiple sclerosis, experimental autoimmune encephalomyelitis, mRNA, galanin, GalR1, GalR2, GalR3, immunohistochemistry

Received: July 1, 2021; Revised: January 19, 2022; Accepted: January 28, 2022; Prepublished online: February 11, 2022; Published: March 15, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Michalickova, D., Kramarikova, I., Ozturk, H.K., Kucera, T., Vacik, T., Hrncir, T., ... Slanar, O. (2023). Detection of galanin receptors in the spinal cord in experimental autoimmune encephalomyelitis. Biomedical papers167(1), 36-42. doi: 10.5507/bp.2022.005
Download citation

References

  1. Michaličková D, Hrnčíř T, Canová NK, Slanař O. Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. Eur J Pharmacol 2020;873:172973. Go to original source... Go to PubMed...
  2. Michaličková D, Šíma M, Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Phys Res 2020;69(1):1-19. Go to original source...
  3. Grigoriadis N, Van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol 2015;22:3-13. Go to original source...
  4. Freimann K, Kurrikoff K, Langel Ü. Galanin receptors as a potential target for neurological disease. Expert Opin Ther Targets 2015;19(12):1665-76. Go to original source... Go to PubMed...
  5. Šípková J, Kramáriková I, Hynie S, Klenerová V. The galanin and galanin receptor subtypes, its regulatory role in the biological and pathological functions. Physiol Res 2017;66(5):729-40. Go to original source...
  6. Kaser-Eichberger A, Trost A, Strohmaier C, Bogner B, Runge C, Bruckner D, Hohberger B, Jünemann A, Kofler B, Reitsamer HA. Distribution of the neuro-regulatory peptide galanin in the human eye. Neuropeptides 2017;64:85-93. Go to original source... Go to PubMed...
  7. Koller A, Brunner SM, Bianchini R, Ramspacher A, Emberger M, Locker F, Schlager S, Kofler B. Galanin is a potent modulator of cytokine and chemokine expression in human macrophages. Sci Rep 2019;9(1):1-13. Go to original source... Go to PubMed...
  8. Schrödl F, Kaser-Eichberger A, Trost A, Strohmaier C, Bogner B, Runge C, Bruckner D, Motloch K, Holub B, Kofler B. Distribution of galanin receptors in the human eye. Exp Eye Res 2015;138:42-51. Go to original source...
  9. Wraith DC, Pope R, Butzkueven H, Holder H, Vanderplank P, Lowrey P, Day MJ, Gundlach AL, Kilpatrick TJ, Scolding N. A role for galanin in human and experimental inflammatory demyelination. Proc Natl Acad Sci USA 2009;106(36):15466-471. Go to original source... Go to PubMed...
  10. Zhang L, Yu W, Schroedter I, Kong J, Vrontakis M. Galanin transgenic mice with elevated circulating galanin levels alleviate demyelination in a cuprizone-induced MS mouse model. PLoS One 2012;7(3):e33901. Go to original source... Go to PubMed...
  11. Barreto S, Bazargan M, Zotti M, Hussey D, Sukocheva O, Peiris H, Leong M, Keating D, Schloithe A, Carati C. Galanin receptor 3-a potential target for acute pancreatitis therapy. J Neurogastroenterol Motil 2011;23(3):e141-e151. Go to original source...
  12. Botz B, Kemény Á, Brunner SM, Locker F, Csepregi J, Mócsai A, Pintér E, McDougall JJ, Kofler B, Helyes Z. Lack of galanin 3 receptor aggravates murine autoimmune arthritis. J Mol Neurosci 2016;59(2):260-69. Go to original source... Go to PubMed...
  13. Brunner SM, Reichmann F, Leitner J, Wölfl S, Bereswill S, Farzi A, Schneider A-M, Klieser E, Neureiter D, Emberger M, Heimesaat MM, Weghuber D, Lang R, Holzer P, Kofler B. Galanin receptor 3 attenuates inflammation and influences the gut microbiota in an experimental murine colitis model. Sci Rep 2021;11(1):564. doi: 10.1038/s41598-020-79456-y Go to original source... Go to PubMed...
  14. Locker F, Vidali S, Holub BS, Stockinger J, Brunner SM, Ebner S, Koller A, Trost A, Reitsamer HA, Schwarzenbacher D. Lack of galanin receptor 3 alleviates psoriasis by altering vascularization, immune cell infiltration, and cytokine expression. J Invest Dermatol 2018;138(1):199-207. Go to original source... Go to PubMed...
  15. Sun J, Xu S, Li H, Li L, Xu Z-QD. Galanin protects rat cortical astrocyte from oxidative stress: involvement of GalR2 and pERK1/2 signal pathway. Mediat Inflamm 2019;2019:2716028. doi: 10.1155/2019/2716028 Go to original source... Go to PubMed...
  16. MacMillan CJ, Doucette CD, Warford J, Furlong SJ, Hoskin DW, Easton AS. Murine experimental autoimmune encephalomyelitis is diminished by treatment with the angiogenesis inhibitors B20-4.1. 1 and angiostatin (K1-3). PLoS One 2014;9(2):e89770. Go to original source... Go to PubMed...
  17. Yamamoto H, Arai T, Ben S, Iguchi K, Hoshino M. Expression of galanin and galanin receptor mRNA in skin during the formation of granulation tissue. Endocrine 2011;40(3):400-07. Go to original source... Go to PubMed...
  18. Yamamoto H, Okada R, Iguchi K, Ohno S, Yokogawa T, Nishikawa K, Unno K, Hoshino M, Takeda A. Involvement of plasmin-mediated extracellular activation of progalanin in angiogenesis. Biochem Biophys Res Commun 2013;430(3):999-1004. Go to original source...
  19. Lengfeld J, Cutforth T, Agalliu D. The role of angiogenesis in the pathology of multiple sclerosis. Vasc Cell 2014;6(1):1-6. Go to original source... Go to PubMed...
  20. Gresle MM, Butzkueven H, Perreau VM, Jonas A, Xiao J, Thiem S, Holmes FE, Doherty W, Soo PY, Binder MD. Galanin is an autocrine myelin and oligodendrocyte trophic signal induced by leukemia inhibitory factor. Glia 2015;63(6):1005-20. Go to original source... Go to PubMed...
  21. Contarini G, Giusti P, Skaper SD. Active induction of experimental autoimmune encephalomyelitis in C57BL/6 mice. In: Neurotrophic Factors. edn.: Springer; 2018: 353-60. Go to original source...
  22. Yamashita M, Ukibe K, Matsubara Y, Hosoya T, Sakai F, Kon S, Arima Y, Murakami M, Nakagawa H, Miyazaki T. Lactobacillus helveticus SBT2171 attenuates experimental autoimmune encephalomyelitis in mice. Frontiers in microbiology 2018;8:2596. Go to original source... Go to PubMed...
  23. Salehipour Z, Haghmorad D, Sankian M, Rastin M, Nosratabadi R, Dallal MMS, Tabasi N, Khazaee M, Nasiraii LR, Mahmoudi M. Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomed Pharmacother 2017;95:1535-48. Go to original source... Go to PubMed...
  24. Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone-induced de-and remyelination in the CNS: lessons learned. Front Cell Neurosci 2014;8:73. Go to original source... Go to PubMed...
  25. Zhan J, Mann T, Joost S, Behrangi N, Frank M, Kipp M. The Cuprizone Model: Dos and Do Nots. Cells 2020;9(4): (4):843. doi: 10.3390/cells9040843 Go to original source... Go to PubMed...
  26. Hatrock D, Caporicci-Dinucci N, Stratton JA. Ependymal cells and multiple sclerosis: proposing a relationship. Neural Regen Res 2020;15(2):263. Go to original source...
  27. Yun JW, Minagar A, Alexander JS. Emerging roles of endothelial cells in multiple sclerosis pathophysiology and therapy. In: Inflammatory Disorders of the Nervous System: Pathogenesis, Immunology, and Clinical Management. edn. Edited by Minagar A, Alexander JS. Cham: Springer International Publishing; 2017: 1-23. Go to original source...
  28. Del Bigio MR. Ependymal cells: biology and pathology. Acta Neuropathol 2010;119(1):55-73. Go to original source... Go to PubMed...
  29. Rigau V, Morin M, Rousset M-C, de Bock F, Lebrun A, Coubes P, Picot M-C, Baldy-Moulinier M, Bockaert J, Crespel A. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain 2007;130(7):1942-56. Go to original source... Go to PubMed...
  30. Roscoe W, Welsh M, Carter D, Karlik S. VEGF and angiogenesis in acute and chronic MOG (35-55) peptide induced EAE. J Neuroimmunol 2009;209(1-2):6-15. Go to original source...
  31. MacMillan CJ, Furlong SJ, Doucette CD, Chen P-L, Hoskin DW, Easton AS. Bevacizumab diminishes experimental autoimmune encephalomyelitis by inhibiting spinal cord angiogenesis and reducing peripheral T-cell responses. J Neuropathol Exp Neurol 2012;71(11):983-99. Go to original source... Go to PubMed...
  32. Kerr N, Holmes FE, Hobson S-A, Vanderplank P, Leard A, Balthasar N, Wynick D. The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2. Molecular and Cellular Neuroscience 2015;68:258-71. Go to original source... Go to PubMed...
  33. Min C, Mierzwa R, Truumees I, King A, Sapidou E, Barrabee E, Terracciano J, Patel MG, Gullo VP, Burrier R. A new fungal metabolite, Sch 202596, with inhibitory activity in the galanin receptor GALR1 assay. Tetrahedron Lett 1997;38(35):6111-14. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.