Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020, 164(3):247-254 | DOI: 10.5507/bp.2019.052

Multiparametric flow cytometry analysis of peripheral blood B cell trafficking differences among Epstein-Barr virus infected and uninfected subpopulations

Katerina Zachovaa, Petr Kosztyua, Josef Zadrazilb, Karel Matousovicc, Karel Vondrakd, Petr Hubaceke, Klara Kostovcikovah, Helena Tlaskalova Hogenovah, Jiri Mesteckyf,g,h, Milan Raskaa,g
a Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
b Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
c Department of Internal Medicine, 2
nd Faculty Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
d Department of Pediatrics, 2
e Department of Microbiology, 2
f Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
g Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
h Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic

Aims: Epstein-Barr virus (EBV) targets predominantly B cells and these cells could acquire new phenotype characteristics. Here we analyzed whether EBV-infected and -uninfected B cells from healthy subjects differ in proportion of dominant phenotypes, maturation stage, and homing receptors expression.

Methods: EBV-infected and -uninfected cells were identified by flow cytometry using fluorophore-labeled EBV RNA-specific DNA probes combined with fluorophore-labeled antibody to surface lineage markers, integrins, chemokine receptors, and immunoglobulin isotypes, including intracellular ones.

Results: Our results show that the trafficking characteristics of EBERpos B cells are distinct from EBERneg B cells with most dominant differences detected for α4β1 and α4β7 and CCR5 and CCR7. EBV-positive cells are predominantly memory IgM+ B cells or plasmablasts/plasma cells (PB/PC) positive for IgA or less for IgM. In comparison to uninfected B cells, less EBV-positive B cells express α4β7 and almost no cells express α4β1. EBV-positive B cells contained significantly higher proportion of CCR5+ and CCR7+ cells in comparison to EBV-negative cells. In vitro exposure of blood mononuclear cells to pro-inflammatory cytokine IL-6 reduces population of EBV-positive B cell.

Conclusion: Although EBV-infected B cells represent only a minor subpopulation, their atypical functions could contribute in predisposed person to development abnormities such as some autoimmune diseases or tumors. Using multi-parameter flow cytometry we characterized differences in migration of EBV-positive and -negative B cells of various maturation stage and isotype of produced antibodies particularly different targeting to mucosal tissues of gastrointestinal and respiratory tracts.

Keywords: Epstein-Barr virus, cell trafficking, IgM, IgA, naïve B cells, memory B cells, plasma blast, plasma cell

Received: May 20, 2019; Revised: June 24, 2019; Accepted: June 27, 2019; Prepublished online: October 12, 2019; Published: September 17, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zachova, K., Kosztyu, P., Zadrazil, J., Matousovic, K., Vondrak, K., Hubacek, P., ... Raska, M. (2020). Multiparametric flow cytometry analysis of peripheral blood B cell trafficking differences among Epstein-Barr virus infected and uninfected subpopulations. Biomedical papers164(3), 247-254. doi: 10.5507/bp.2019.052
Download citation

References

  1. Baumforth KR, Young LS, Flavell KJ, Constandinou C, Murray PG. The Epstein-Barr virus and its association with human cancers. Mol Pathol 1999;52(6):307-22. Go to original source... Go to PubMed...
  2. Ascherio A, Munger KL. EBV and Autoimmunity. Curr Top Microbiol Immunol 2015;390(Pt 1):365-85. Go to original source... Go to PubMed...
  3. Capone G, Fasano C, Lucchese G, Calabro M, Kanduc D. EBV-Associated Cancer and Autoimmunity: Searching for Therapies. Vaccines (Basel) 2015;3(1):74-89. Go to original source... Go to PubMed...
  4. Crawford DH. Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 2001;356(1408):461-73. Go to original source... Go to PubMed...
  5. Draborg AH, Duus K, Houen G. Epstein-Barr virus in systemic autoimmune diseases. Clin Dev Immunol 2013;2013:535738. doi: 10.1155/2013/535738 Go to original source... Go to PubMed...
  6. Murray PG, Billingham LJ, Hassan HT, Flavell JR, Nelson PN, Scott K, Reynolds G, Constandinou CM, Kerr DJ, Devey EC, Crocker J, Young LS. Effect of Epstein-Barr virus infection on response to chemotherapy and survival in Hodgkin's disease. Blood 1999;94(2):442-7. Go to original source...
  7. Morandi E, Jagessar SA, T Hart BA, Gran B. EBV Infection Empowers Human B Cells for Autoimmunity: Role of Autophagy and Relevance to Multiple Sclerosis. J Immunol 2017;199(2):435-48. Go to original source... Go to PubMed...
  8. Kishimoto T. Factors affecting B-cell growth and differentiation. Annu Rev Immunol 1985;3:133-57. Go to original source... Go to PubMed...
  9. Klashman DJ, Martin RA, Martinez-Maza O, Stevens RH. In vitro regulation of B cell differentiation by interleukin-6 and soluble CD23 in systemic lupus erythematosus B cell subpopulations and antigen-induced normal B cells. Arthritis Rheum 1991;34(3):276-86. Go to original source... Go to PubMed...
  10. Dienz O, Eaton SM, Bond JP, Neveu W, Moquin D, Noubade R, Briso EM, Charland C, Leonard WJ, Ciliberto G, Teuscher C, Haynes L, Rincon M. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med 2009;206(1):69-78. Go to original source... Go to PubMed...
  11. Fakan F, Boudova L, Hejda C. [Syndecan-1 (CD138): an immunohistochemical marker of plasma cell tumors]. Cesk Patol 2002;38(1):33-6. Go to PubMed...
  12. O'connell FP, Pinkus JL, Pinkus GS. CD138 (syndecan-1), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am J Clin Pathol 2004;121(2):254-63. Go to original source...
  13. Ehlin-Henriksson B, Zou JZ, Klein G, Ernberg I. Epstein-Barr virus genomes are found predominantly in IgA-positive B cells in the blood of healthy carriers. Int J Cancer 1999;83(1):50-4. Go to original source...
  14. Duty JA, Szodoray P, Zheng NY, Koelsch KA, Zhang Q, Swiatkowski M, Mathias M, Garman L, Helms C, Nakken B, Smith K, Farris AD, Wilson PC. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J Exp Med 2009;206(1):139-51. Go to original source... Go to PubMed...
  15. Koelsch K, Zheng NY, Zhang Q, Duty A, Helms C, Mathias MD, Jared M, Smith K, Capra JD, Wilson PC. Mature B cells class switched to IgD are autoreactive in healthy individuals. J Clin Invest 2007;117(6):1558-65. Go to original source... Go to PubMed...
  16. Kaminski DA, Wei C, Qian Y, Rosenberg AF, Sanz I. Advances in human B cell phenotypic profiling. Front Immunol 2012;3:302. Go to original source... Go to PubMed...
  17. Weller S, Braun MC, Tan BK, Rosenwald A, Cordier C, Conley ME, Plebani A, Kumararatne DS, Bonnet D, Tournilhac O, Tchernia G, Steiniger B, Staudt LM, Casanova JL, Reynaud CA, Weill JC. Human blood IgM "memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 2004;104(12):3647-54. Go to original source... Go to PubMed...
  18. Pakkanen SH, Kantele JM, Moldoveanu Z, Hedges S, Hakkinen M, Mestecky J, Kantele A. Expression of homing receptors on IgA1 and IgA2 plasmablasts in blood reflects differential distribution of IgA1 and IgA2 in various body fluids. Clin Vaccine Immunol 2010;17(3):393-401. Go to original source... Go to PubMed...
  19. Johansen FE, Baekkevold ES, Carlsen HS, Farstad IN, Soler D, Brandtzaeg P. Regional induction of adhesion molecules and chemokine receptors explains disparate homing of human B cells to systemic and mucosal effector sites: dispersion from tonsils. Blood 2005;106(2):593-600. Go to original source... Go to PubMed...
  20. Brandtzaeg P. (2015). The mucosal B cell system. In J. Mestecky, W. Strober, M. W. Russel, B. L. Kelsall, H. Cheroutre & B. N. Lambrecht (Eds.), Mucosal immunology (Fourth edition. ed., Vol. I, pp. 623-81). Amsterdam: Elsevier/AP, Academic Press is an imprint of Elsevier.
  21. Al Tabaa Y, Tuaillon E, Bollore K, Foulongne V, Petitjean G, Seigneurin JM, Duperray C, Desgranges C, Vendrell JP. Functional Epstein-Barr virus reservoir in plasma cells derived from infected peripheral blood memory B cells. Blood 2009;113(3):604-11. Go to original source... Go to PubMed...
  22. Richard Y, Amiel C, Jeantils V, Mestivier D, Portier A, Dhello G, Feuillard J, Creidy R, Nicolas JC, Raphael M. Changes in blood B cell phenotypes and Epstein-Barr virus load in chronically human immunodeficiency virus-infected patients before and after antiretroviral therapy. J Infect Dis 2010;202(9):1424-34. Go to original source... Go to PubMed...
  23. Nagata K, Kumata K, Nakayama Y, Satoh Y, Sugihara H, Hara S, Matsushita M, Kuwamoto S, Kato M, Murakami I, Hayashi K. Epstein-Barr Virus Lytic Reactivation Activates B Cells Polyclonally and Induces Activation-Induced Cytidine Deaminase Expression: A Mechanism Underlying Autoimmunity and Its Contribution to Graves' Disease. Viral Immunol 2017;30(3):240-9. Go to original source... Go to PubMed...
  24. Miller G. Immortalization of human lymphocytes by Epstein-Barr virus. Yale J Biol Med 1982;55(3-4):305-10.
  25. Tosato G, Cohen JI. Generation of Epstein-Barr Virus (EBV)-immortalized B cell lines. Curr Protoc Immunol 2007;Chapter 7:Unit 7.22. doi: 10.1002/0471142735.im0722s76 Go to original source... Go to PubMed...
  26. Nakayama T, Fujisawa R, Izawa D, Hieshima K, Takada K, Yoshie O. Human B cells immortalized with Epstein-Barr virus upregulate CCR6 and CCR10 and downregulate CXCR4 and CXCR5. J Virol 2002;76(6):3072-7. Go to original source... Go to PubMed...
  27. Huang S, Stupack D, Liu A, Cheresh D, Nemerow GR. Cell growth and matrix invasion of EBV-immortalized human B lymphocytes is regulated by expression of alpha(v) integrins. Oncogene 2000;19(15):1915-23. Go to original source... Go to PubMed...
  28. Kurth J, Hansmann ML, Rajewsky K, Kuppers R. Epstein-Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc Natl Acad Sci U S A 2003;100(8):4730-5. Go to original source... Go to PubMed...
  29. Mahjoub F, Shahsiah R, Ardalan FA, Iravanloo G, Sani MN, Zarei A, Monajemzadeh M, Farahmand F, Mamishi S. Detection of Epstein Barr virus by chromogenic in situ hybridization in cases of extra-hepatic biliary atresia. Diagn Pathol 2008;3:19. Go to original source... Go to PubMed...
  30. Gulley ML. Molecular diagnosis of Epstein-Barr virus-related diseases. J Mol Diagn 2001;3(1):1-10. Go to original source... Go to PubMed...
  31. Pereira JP, Kelly LM, Cyster JG. Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. Int Immunol 2010;22(6):413-9. Go to original source... Go to PubMed...
  32. Hopken UE, Achtman AH, Kruger K, Lipp M. Distinct and overlapping roles of CXCR5 and CCR7 in B-1 cell homing and early immunity against bacterial pathogens. J Leukoc Biol 2004;76(3):709-18. Go to original source... Go to PubMed...
  33. Cameron PU, Jones P, Gorniak M, Dunster K, Paul E, Lewin S, Woolley I, Spelman D. Splenectomy associated changes in IgM memory B cells in an adult spleen registry cohort. PLoS One 2011;6(8):e23164. Go to original source... Go to PubMed...
  34. Kruetzmann S, Rosado MM, Weber H, Germing U, Tournilhac O, Peter HH, Berner R, Peters A, Boehm T, Plebani A, Quinti I, Carsetti R. Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med 2003;197(7):939-45. Go to original source... Go to PubMed...
  35. Seifert M, Przekopowitz M, Taudien S, Lollies A, Ronge V, Drees B, Lindemann M, Hillen U, Engler H, Singer BB, Kuppers R. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proc Natl Acad Sci U S A 2015;112(6):E546-55. Go to original source... Go to PubMed...
  36. Underhill GH, Minges Wols HA, Fornek JL, Witte PL, Kansas GS. IgG plasma cells display a unique spectrum of leukocyte adhesion and homing molecules. Blood 2002;99(8):2905-12. Go to original source... Go to PubMed...
  37. Winkelmann R, Sandrock L, Porstner M, Roth E, Mathews M, Hobeika E, Reth M, Kahn ML, Schuh W, Jack HM. B cell homeostasis and plasma cell homing controlled by Kruppel-like factor 2. Proc Natl Acad Sci U S A 2011;108(2):710-5. Go to original source... Go to PubMed...
  38. Laurence M, Benito-Leon J. Epstein-Barr virus and multiple sclerosis: Updating Pender's hypothesis. Mult Scler Relat Disord 2017;16:8-14. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.