Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020, 164(1):23-33 | DOI: 10.5507/bp.2019.062

Treatments for enhancing the biocompatibility of titanium implants

Jana Stepanovskaa,b, Roman Matejkaa,b, Jozef Rosinaa, Lucie Bacakovab, Hana Kolarovac
a Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
b Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
c Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic

Titanium surface treatment is a crucial process for achieving sufficient osseointegration of an implant into the bone. If the implant does not heal sufficiently, serious complications may occur, e.g. infection, inflammation, aseptic loosening of the implant, or the stress-shielding effect, as a result of which the implant may need to be reoperated. After a titanium graft has been implanted, several interactions are crucial in order to create a strong bone-implant connection. It is essential that cells adhere to the surface of the implant. Surface roughness has a significant influence on cell adhesion, and also on improving and accelerating osseointegration. Other highly important factors are biocompatibility and resistance to bacterial contamination. Bio-inertness of titanium is ensured by the protective film of titanium oxides that forms spontaneously on its surface. This film prevents the penetration of metal compounds, and it is well-adhesive for calcium and phosphate ions, which are necessary for the formation of the mineralized bone structure. Since the presence of the film alone is not sufficient for the biocompatibility of titanium, a suitable surface finish is required to create a firm bone-implant connection. In this review, we explain and compare the most widely-used methods for modulating the surface roughness of titanium implants in order to enhance cell adhesion on the surface of the implant, e.g. plasma spraying, sandblasting, acid etching, laser treatment, sol-gel etc., The methods are divided into three overlapping groups, according to the type of modification.

Keywords: titanium treatment, osseointegration, biocompatibility, surface modification

Received: November 20, 2019; Revised: December 15, 2019; Accepted: December 17, 2019; Prepublished online: January 6, 2020; Published: March 26, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Stepanovska, J., Matejka, R., Rosina, J., Bacakova, L., & Kolarova, H. (2020). Treatments for enhancing the biocompatibility of titanium implants. Biomedical papers164(1), 23-33. doi: 10.5507/bp.2019.062
Download citation

References

  1. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 2010;132:15-30.
  2. Bancroft GN, Mikos AG. Bone Tissue Engineering by Cell Transplantation. In: Reis RL, Cohn D, eds. Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. Dordrecht: Springer Netherlands; 2002. 251-63. Go to original source...
  3. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 2001;83-A Suppl 2 Pt 2:98-103. Go to original source... Go to PubMed...
  4. Del Fabbro M, Rosano G, Taschieri S. Implant survival rates after maxillary sinus augmentation. Eur J Oral Sci 2008;116(6):497-506. Go to original source... Go to PubMed...
  5. Lanza R, Langer R, Vacanti JP. Preface. Principles of Tissue Engineering (Fourth Edition). Boston: Academic Press; 2014. Go to original source...
  6. Albert A, Leemrijse T, Druez V, Delloye C, Cornu O. Are bone autografts still necessary in 2006? A three-year retrospective study of bone grafting. Acta Orthop Belg 2006;72(6):734-40. Go to PubMed...
  7. Kaigler D, Pagni G, Park CH, Tarle SA, Bartel RL, Giannobile WV. Angiogenic and osteogenic potential of bone repair cells for craniofacial regeneration. Tissue Eng Part A 2010;16(9):2809-20. Go to original source... Go to PubMed...
  8. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 2008;1(1):30-42. Go to original source... Go to PubMed...
  9. Williams DF. On the nature of biomaterials. Biomaterials 2009;30(30):5897-909. Go to original source... Go to PubMed...
  10. Okumura A, Goto M, Goto T, Yoshinari M, Masuko S, Katsuki T, Tanaka T. Substrate affects the initial attachment and subsequent behavior of human osteoblastic cells (Saos-2). Biomaterials 2001;22(16):2263-71. Go to original source... Go to PubMed...
  11. Eastlund T. Infectious disease transmission through cell, tissue, and organ transplantation: reducing the risk through donor selection. Cell Transplant 1995;4(5):455-77. Go to original source... Go to PubMed...
  12. Zhang L, Webster TJ. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009;4(1):66-80. Go to original source...
  13. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 2011;29(6):739-67. Go to original source... Go to PubMed...
  14. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J 2001;10:S96-S101. Go to original source... Go to PubMed...
  15. Schuler M, Trentin D, Textor M, Tosatti SG. Biomedical interfaces: titanium surface technology for implants and cell carriers. Nanomedicine (Lond) 2006;1(4):449-63. Go to original source... Go to PubMed...
  16. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics. Organogenesis 2014;8(4):114-24. Go to original source... Go to PubMed...
  17. Elsalanty M, Genecov D. Bone Grafts in Craniofacial Surgery. Craniomaxillofac Trauma Reconstr 2009;2(3):125-34. Go to original source... Go to PubMed...
  18. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 1993;14(1):65-88. Go to original source... Go to PubMed...
  19. Puleo DA, Thomas MV. Implant Surfaces. Dent Clin North Am 2006;50(3):323-38. Go to original source... Go to PubMed...
  20. Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008;29(20):2941-53. Go to original source... Go to PubMed...
  21. Adya N, Alam M, Ravindranath T, Mubeen A, Saluja B. Corrosion in titanium dental implants: literature review. J Indian Prosthodont Soc 2005;5(3):126-8. Go to original source...
  22. Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 2004;47(3-4):49-121. Go to original source...
  23. Legeros RZ, Craig RG. Strategies to affect bone remodeling: Osteointegration. J Bone Miner Res 1993;8(S2):S583-S96. Go to original source... Go to PubMed...
  24. Mas-Moruno C, Espanol M, Montufar EB, Mestres G. Bioactive Ceramic and Metallic Surfaces for Bone Engineering. Biomaterials Surface Science 2013:337-74. Go to original source...
  25. Prodana M, Caposi M, Iordachescu D. Ions Release from Ti Implant Alloys in Simulated Bioliquids. 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics 2008:60-3. Go to original source...
  26. Franchi M, Orsini E, Triré A, Quaranta M, Martini D, Piccari GG, Ruggeri A, Ottani V. Osteogenesis and Morphology of the Peri-Implant Bone Facing Dental Implants. Sci World J 2004;4:1083-95. Go to original source... Go to PubMed...
  27. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23(7):844-54. Go to original source... Go to PubMed...
  28. Bagno A, Di Bello C. Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med 2004;15(9):935-49. Go to original source... Go to PubMed...
  29. Xiao J, Zhou H, Zhao L, Sun Y, Guan S, Liu B, Kong L. The effect of hierarchical micro/nanosurface titanium implant on osseointegration in ovariectomized sheep. Osteoporos Int 2011(22):1907-13. Go to original source... Go to PubMed...
  30. Pivodova V, Frankova J, Dolezel P, Ulrichova J. The Response of Osteoblast-Like SaOS-2 Cells to Modified Titanium Surfaces. Int J Oral Maxillofac Implants 2013;28:1386-94. Go to original source... Go to PubMed...
  31. Sakka S, Coulthard P. Implant failure: Etiology and complications. Med Oral Patol Oral Cir Bucal 2009:e42-e4. Go to original source... Go to PubMed...
  32. De Groot K, Geesink R, Klein CPAT, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res 1987;21(12):1375-81. Go to original source... Go to PubMed...
  33. Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface Modifications and Their Effects on Titanium Dental Implants. Biomed Res Int 2015;2015:1-11. Go to original source... Go to PubMed...
  34. Gongadze, Kabaso D, Bauer S, Slivnik T, Schmuki P, van Rienen U, Igliè A. Adhesion of osteoblasts to a nanorough titanium implant surface. Int J Nanomedicine 2011:1801-16. Go to original source... Go to PubMed...
  35. Uzumaki ET, Santos AR, Lambert CS. Titanium Oxide (TiOsub2/sub) Coatings Produced on Titanium by Oxygen-Plasma Immersion and Cell Behaviour on TiOsub2/sub. Key Eng Mat 2006;309-311:367-70. Go to original source...
  36. Rad AT, Faghihi S. On the relation between surface texture of metallic implants and their bioactivity. Surf Innov 2019;7(2):93-100. Go to original source...
  37. Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorghometric study of screw-shaped and removal torque titanium implants with three different surface topographies. Clin Oral Implants Res 1995;6(1):24-30. Go to original source... Go to PubMed...
  38. Becker W, Becker BE, Ricci A, Bahat O, Rosenberg E, Rose LF, Handelsman M, Israelson H. A Prospective Multicenter Clinical Trial Comparing One- and Two-Stage Titanium Screw-Shaped Fixtures with One-Stage Plasma-Sprayed Solid-Screw Fixtures. Clin Implant Dent Relat Res 2000;2(3):159-65. Go to original source... Go to PubMed...
  39. Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res 1998;9(1):11-9. Go to original source... Go to PubMed...
  40. Hansson S, Norton M. The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. J Biomech 1999;32(8):829-36. Go to original source... Go to PubMed...
  41. Choi CR, Yu HS, Kim CH, Lee JH, Oh CH, Kim HW, Lee HH. Bone Cell Responses of Titanium Blasted with Bioactive Glass Particles. J Biomater Appl 2009;25(2):99-117. Go to original source... Go to PubMed...
  42. Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 2004;25(19):4731-9. Go to original source... Go to PubMed...
  43. Liu H, Slamovich EB, Webster TJ. Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J Biomed Mater Res A 2006;78A(4):798-807. Go to original source... Go to PubMed...
  44. Kalbacova M, Rezek B, Baresova V, Wolf-Brandstetter C, Kromka A. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts. Acta Biomater 2009;5(8):3076-85. Go to original source... Go to PubMed...
  45. Rüger M, Gensior TJ, Herren C, von Walter M, Ocklenburg C, Marx R, Erli HJ. The removal of Al2O3 particles from grit-blasted titanium implant surfaces: Effects on biocompatibility, osseointegration and interface strength in vivo. Acta Biomater 2010;6(7):2852-61. Go to original source... Go to PubMed...
  46. Aparicio C, Javier Gil F, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 2003;24(2):263-73. Go to original source... Go to PubMed...
  47. Rasmusson L, Kahnberg KE, Tan A. Effects of Implant Design and Surface on Bone Regeneration and Implant Stability: An Experimental Study in the Dog Mandible. Clin Implant Dent Relat Res 2001;3(1):2-8. Go to original source... Go to PubMed...
  48. Rasmusson L, Roos J, Bystedt H. A 10-Year Follow-Up Study of Titanium Dioxide-Blasted Implants. Clin Implant Dent Relat Res 2005;7(1):36-42. Go to original source... Go to PubMed...
  49. Piattelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piattelli A. Bone Response to Machined and Resorbable Blast Material Titanium Implants: An Experimental Study in Rabbits. J Oral Implantol 2002;28(1):2-8. Go to original source... Go to PubMed...
  50. Zhu KY, Vassel A, Brisset F, Lu K, Lu J. Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater 2004;52(14):4101-10. Go to original source...
  51. Guo FA, Zhu KY, Trannoy N, Lu J. Examination of thermal properties by scanning thermal microscopy in ultrafine-grained pure titanium surface layer produced by surface mechanical attrition treatment. Thermochim Acta 2004;419(1-2):239-46. Go to original source...
  52. Arifvianto B, Suyitno, Mahardika M. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel. Appl Surf Sci 2012;258(10):4538-43. Go to original source...
  53. Zhao C, Han P, Ji W, Zhang X. Enhanced mechanical properties and in vitro cell response of surface mechanical attrition treated pure titanium. J Biomater Appl 2011;27(2):113-8. Go to original source... Go to PubMed...
  54. Li P, Kangasniemi I, De Groot K, Kokubo T. ChemInform Abstract: Bonelike Hydroxyapatite Induction by a Gel-Derived Titania on a Titanium Substrate. ChemInform 1994;77:1305-12. Go to original source...
  55. Stigler R, Becker K, Bruschi M, Steinmüller-Nethl D, Gassner R. Impact of Nano-Crystalline Diamond Enhanced Hydrophilicity on Cell Proliferation on Machined and SLA Titanium Surfaces: An In-Vivo Study in Rodents. Nanomaterials 2018;8(7). Go to original source... Go to PubMed...
  56. Bacakova L, Vandrovcova M, Kopova I, Jirka I. Applications of zeolites in biotechnology and medicine - a review. Biomater Sci 2018;6(5):974-89. Go to original source... Go to PubMed...
  57. Costa DG, Ferraz EP, Abuna RPF, de Oliveira PT, Morra M, Beloti MM, Rosa AL. The effect of collagen coating on titanium with nanotopography on in vitro osteogenesis. J Biomed Mater Res A 2017;105(10):2783-8. Go to original source... Go to PubMed...
  58. Chang YC, Ho KN, Feng SW. Fibronectin-Grafted Titanium Dental Implants: A In Vivo Study. Biomed Res Int 2016;2016:1-11. Go to original source... Go to PubMed...
  59. Rivera-Chacon DM, Alvarado-Velez M, Acevedo-Morantes CY, Singh SP, Gultepe E, Nagesha D, Sridhar S, Ramirez-Vick JE. Fibronectin and Vitronectin Promote Human Fetal Osteoblast Cell Attachment and Proliferation on Nanoporous Titanium Surfaces. J Biomed Nanotechnol 2013;9(6):1092-7. Go to original source... Go to PubMed...
  60. Raphel J, Karlsson J, Galli S, Wennerberg A, Lindsay C, Haugh MG, Pajarinen J, Goodman SB, Jimbo R, Andersson M, Heilshorn SC. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials 2016;83:269-82. Go to original source... Go to PubMed...
  61. Hoyos-Nogués M, Falgueras-Batlle E, Ginebra M-P, Manero J, Gil J, Mas-Moruno C. A Dual Molecular Biointerface Combining RGD and KRSR Sequences Improves Osteoblastic Functions by Synergizing Integrin and Cell-Membrane Proteoglycan Binding. Int J Mol Sci 2019;20(6):pii: E1429. doi: 10.3390/ijms20061429 Go to original source... Go to PubMed...
  62. He Y, Mu C, Shen X, Yuan Z, Liu J, Chen W, Lin C, Tao B, Liu B, Cai K. Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment. Acta Biomater 2018;80:412-24. Go to original source... Go to PubMed...
  63. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 1995;29(12):1567-75. Go to original source... Go to PubMed...
  64. Santiago AS, Santos EA, Sader MS, Santiago MF, Soares GdA. Response of osteoblastic cells to titanium submitted to three different surface treatments. Braz Oral Res 2005;19(3):203-8. Go to original source... Go to PubMed...
  65. Hatamleh MM, Wu X, Alnazzawi A, Watson J, Watts D. Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments. Dent Mater 2018;34(4):676-83. Go to original source... Go to PubMed...
  66. Guo CY, Matinlinna JP, Tang ATH. Effects of Surface Charges on Dental Implants: Past, Present, and Future. Int J Biomater 2012;2012:1-5. Go to original source... Go to PubMed...
  67. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11(5):391-401.
  68. Cochran DL, Buser D, ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, Peters F, Simpson JP. The use of reduced healing times on ITIR implants with a sandblasted and acid-etched (SLA) surface: Early results from clinical trials on ITIR SLA implants. Clin Oral Implants Res 2002;13(2):144-53. Go to original source... Go to PubMed...
  69. Ellingsen JE. Pre-treatment of titanium implants with fluoride improves their retention in bone. J Mater Sci Mater Med 1995;6(12):749-53. Go to original source...
  70. Zahran R, Rosales Leal JI, Rodríguez Valverde MA, Cabrerizo Vílchez MA, Zheng J. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion. PLoS One 2016;11(11):e0165296. Go to original source... Go to PubMed...
  71. Webster TJ, Yao C. Anodization: A Promising Nano Modification Technique of Titanium-Based Implants for Orthopedic Applications. Surgical Tools and Medical Devices. Cham: Springer International Publishing; 2016. 55-79. Go to original source...
  72. Smeets R, Stadlinger B, Schwarz F. Implant surface modification and osseointegration - Past, present and future. Biomed Res Int 2016;2016(8):113-8. Go to original source... Go to PubMed...
  73. Yokoyama Ki, Ichikawa T, Murakami H, Miyamoto Y, Asaoka K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials 2002;23(12):2459-65. Go to original source... Go to PubMed...
  74. Cho S. A removal torque of the laser-treated titanium implants in rabbit tibia. Biomaterials 2003;24(26):4859-63. Go to original source... Go to PubMed...
  75. Fischer K, Stenberg T, Hedin M, Sennerby L. Five-year results from a randomized, controlled trial on early and delayed loading of implants supporting full-arch prosthesis in the edentulous maxilla. Clin Oral Implants Res 2008;19(5):433-41. Go to original source... Go to PubMed...
  76. Franková J, Pivodová V, Rù¾ièka F, et al. Comparing biocompatibility of gingival fibroblasts and bacterial strains on a different modified titanium discs. J Biomed Mater Res A 2013;101(10):2915-24. Go to original source... Go to PubMed...
  77. He FM, Yang GL, Li YN, Wang XX, Zhao SF. Early bone response to sandblasted, dual acid-etched and H2O2/HCl treated titanium implants: an experimental study in the rabbit. Int J Oral Maxillofac Surg 2009;38(6):677-81. Go to original source... Go to PubMed...
  78. Chakravorty N, Jaiprakash A, Ivanovski S, Xiao Y. Implant Surface Modifications and Osseointegration. Biomaterials for Implants and Scaffolds. Berlin, Heidelberg: Springer Berlin Heidelberg; 2017. 107-31. Go to original source...
  79. Xie Y, Liu X, Zheng X, Ding C, Chu PK. Improved stability of plasma-sprayed dicalcium silicate/zirconia composite coating. Thin Solid Films 2006;515(3):1214-8. Go to original source...
  80. Cirano FR, Togashi AY, Marques MM, Pustiglioni FE, Lima LAPA. The Effects of Different Titanium Surfaces on the Behaviour of Osteoblast-Like Cells. J Biomed Sci Eng 2015;8(6):380-8. Go to original source...
  81. İzmir M, Ercan B. Anodization of titanium alloys for orthopedic applications. Front Chem Sci Eng 2019;13(1):28-45.
  82. Huang Y-H, Xiropaidis AV, Sorensen RG, Albandar JM, Hall J, Wikesjö UME. Bone formation at titanium porous oxide (TiUnite™) oral implants in type IV bone. Clin Oral Implants Res 2005;16(105):11. Go to original source...
  83. Rocci A, Martignoni M, Gottlow J. Immediate loading of Branemark System TiUnite and machined-surface implants in the posterior mandible: a randomized open-ended clinical trial. Clin Implant Dent Relat Res 2003;5:57-63. Go to original source... Go to PubMed...
  84. Qin R, Ding DY, Ning CQ. Ni-doped TiO2 nanotube arrays on shape memory alloy. Appl Surf Sci 2011;257(14):6308-13. Go to original source...
  85. Zhao L, Liu L, Wu Z, Zhang Y, Chu PK. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. Biomaterials 2012;33(9):2629-41. Go to original source... Go to PubMed...
  86. Xiao X, Liang J, Tang H, Yang X, Liu R, Chen Y. Preparation and bioactivity of TiO2 nanotube arrays containing calcium and phosphorus. Appl Surf Sci 2012;261:312-9. Go to original source...
  87. Ciganovic J, Stasic J, Gakovic B, Momcilovic M, Milovanovic D, Bokorov M, Trtica M. Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres - Comparative study. Appl Surf Sci 2012;258(7):2741-8. Go to original source...
  88. Mukherjee S, Dhara S, Saha P. Enhancing the biocompatibility of Ti6Al4V implants by laser surface microtexturing: an in vitro study. Int J Adv Manuf Tech 2015;76(1-4):5-15. Go to original source...
  89. Ulerich J, Ionescu L, Chen J, Soboyejo W, Arnold C. Modifications of Ti-6Al-4V surfaces by direct-write laser machining of linear grooves. Proc SPIE Soc Opt Eng 2007;6458. Go to original source...
  90. Babuska V, Palan J, Kolaja Dobra J, et al. Proliferation of Osteoblasts on Laser-Modified Nanostructured Titanium Surfaces. Materials (Basel) 2018;11(10):1827. Go to original source... Go to PubMed...
  91. Chauvy PF, Hoffmann P, Landolt D. Applications of laser lithography on oxide film to titanium micromachining. Appl Surf Sci 2003;208:165-70. Go to original source...
  92. Giorleo L, Ceretti E, Giardini C. Ti Surface Laser Polishing: Effect of Laser Path and Assist Gas. Procedia CIRP 2015;33:446-51. Go to original source...
  93. Bereznai M. Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomaterials 2003;24(23):4197-203. Go to original source... Go to PubMed...
  94. Jelínek M, Zemek J, Remsa J. Hybrid laser technology and doped biomaterials. Appl Surf Sci 2017;417:73-83. Go to original source...
  95. Soboyejo WO, Mercer C, Allameh S, Nemetski B, Marcantonio N, Ricci JL. Multi-Scale Microstructural Characterization of Micro-Textured Ti-6Al-4V Surfaces. Key Eng Mat 2001;198-199:203-30. Go to original source...
  96. Shishkovsky IV, Kuznetsov MV, Morozov YG. Porous titanium and nitinol implants synthesized by SHS/SLS: Microstructural and histomorphological analyses of tissue reactions. Int J Self Propag High Temp Synth 2010;19(2):157-67. Go to original source...
  97. Bandyopadhyay A, Shivaram A, Tarafder S, Sahasrabudhe H, Banerjee D, Bose S. In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants. Ann Biomed Eng 2017;45(1):249-60. Go to original source... Go to PubMed...
  98. Darimont GL, Cloots R, Heinen E, Seidel L, Legrand R. In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials 2002;23(12):2569-75. Go to original source... Go to PubMed...
  99. Knabe C, Klar F, Fitzner R, Radlanski RJ, Gross U. In vitro investigation of titanium and hydroxyapatite dental implant surfaces using a rat bone marrow stromal cell culture system. Biomaterials 2002;23(15):3235-45. Go to original source... Go to PubMed...
  100. Martini D, Fini M, Franchi M, Pasquale VD, Bacchelli B, Gamberini M, Tinti A, Taddei P, Giavaresi G, Ottani V, Raspanti M, Guizzardi S, Ruggeri A. Detachment of titanium and fluorohydroxyapatite particles in unloaded endosseous implants. Biomaterials 2003;24(7):1309-16. Go to original source... Go to PubMed...
  101. Simmons CA, Valiquette N, Pilliar RM. Osseointegration of sintered porous-surfaced and plasma spray-coated implants: An animal model study of early postimplantation healing response and mechanical stability. J Biomed Mater Res 1999;47(2):127-38. Go to original source...
  102. Telleman G, Albrektsson T, Hoffman M, Johansson CB, Vissink A, Meijer HJ, Raghoebar GM. Peri-Implant Endosseous Healing Properties of Dual Acid-Etched Mini-Implants with a Nanometer-Sized Deposition of CaP: A Histological and Histomorphometric Human Study. Clin Implant Dent Relat Res 2010;12(2):153-60. Go to original source... Go to PubMed...
  103. Morris HF, Ochi S, Spray JR, Olson JW. Periodontal-Type Measurements Associated With Hydroxyapatite-Coated and Non-HA-Coated Implants: Uncovering to 36 Months. Ann Periodontol 2000;5(1):56-67. Go to original source... Go to PubMed...
  104. Tinsley D, Watson CJ, Russell JL. A comparison of hydroxylapatite coated implant retained fixed and removable mandibular prostheses over 4 to 6 years. Clin Oral Implants Res 2001;12(2):159-66. Go to original source... Go to PubMed...
  105. Roccuzzo M, Bunino M, Prioglio F, Bianchi SD. Early loading of sandblasted and acid-etched (SLA) implants: a prospective split-mouth comparative study. One-year results. Clin Oral Implants Res 2001;12(6):572-8. Go to original source... Go to PubMed...
  106. Yu-Liang C, Lew D, Park JB, Keller JC. Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying crystallinity. J Oral Maxillofac Surg 1999;57(9):1096-108. Go to original source... Go to PubMed...
  107. Giavaresi G, Fini M, Cigada A, Chiesa R, Rondelli G, Rimondini L, Torricelli P, Aldini NN, Giardino R. Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials 2003;24(9):1583-94. Go to original source... Go to PubMed...
  108. Lee JJ, Rouhfar L, Beirne OR. Survival of hydroxyapatite-coated implants: A meta-analytic review. J Oral Maxillofac Surg 2000;58(12):1372-9. Go to original source... Go to PubMed...
  109. Hench LL, West JK. The sol-gel process. Chem Rev 1990;90(1):33-72. Go to original source...
  110. Ward DA, Ko EI. Preparing Catalytic Materials by the Sol-Gel Method. Ind Eng Chem Res 1995;34(2):421-33. Go to original source...
  111. Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv 2018;36(4):1111-26. Go to original source... Go to PubMed...
  112. Liskova J, Babchenko O, Varga M, Kromka A, Hadraba D, Svindrych Z, Burdikova Z, Bacakova L. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films. Int J Nanomedicine 2015;10:869-84. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.