Acta Univ. Agric. Silvic. Mendelianae Brun. 2022, 70(3), 235-247 | DOI: 10.11118/actaun.2022.018

Evaluation of Walnut Tree Flowering and Frost Occurrence Probability During 1961-2012

Lenka Hájková1, Martin Možný1, Veronika Oušková1, Petra Dížková2, 3, Lenka Bartošová2, 3, Zdeněk Žalud2, 3
1 Department of Biometeorological Applications, Czech Hydrometeorological Institute, Na Šabatce 17, 143 06 Prague, Czech Republic
2 Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
3 Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic

Strength and direction of the potential effect of climate change on walnuts is regionally specific (Gauthier and Jacobs, 2011) as climate change will probably affect the spatial distribution of the walnut. This paper evaluated the long-term phenological series (1961-2012) of the beginning of flowering, end of flowering and duration of flowering in walnut tree (Juglans regia) at two phenological stations located in different geographical locations of the Czech Republic but in the same climatic conditions (warm region). Phenological stages were analyzed in relation to growing degree days and to spring frosts occurrence. Onset of the beginning and end of flowering occurred earlier at Velké Pavlovice station (-2.1 and -1.3 days), and conversely occurred later at Doksany station (+1.8 and +1.0). Period of flowering shortened at Doksany station (-0.8 day) and prolonged at Velké Pavlovice station (+1.2 day). The occurrence of days with minimum air temperature < 0 °C during walnut tree flowering was more frequent at Doksany station (in total, 29 days) with absolute minimum value -5.5 °C. At Velké Pavlovice station 5 days with minimum air temperature below 0 °C were found during examined period with absolute minimum value -3.8 °C. The negative trend in number of frost days occurrence during flowering period was found at both stations. Pearson correlation coefficient between phenophase onset (and flowering period) and sums of growing degree days was stronger at Velké Pavlovice station, and the highest value was between period of flowering and temperature sums (0.782). The results confirmed our hypothesis of changes in phenophase onsets and duration of flowering including spring frosts occurrence according to west-east gradient (maritime climate-continental climate).

Keywords: Juglans regia, spring frost, phenology, minimum air temperature, Czech Republic

Received: September 16, 2021; Revised: September 16, 2021; Accepted: June 7, 2022; Published: July 1, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hájková, L., Možný, M., Oušková, V., Dížková, P., Bartošová, L., & Žalud, Z. (2022). Evaluation of Walnut Tree Flowering and Frost Occurrence Probability During 1961-2012. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis70(3), 235-247. doi: 10.11118/actaun.2022.018
Download citation

References

  1. AHAS, R., AASA, A., MENZEL, A., FEDOTOVA, V. G. and SCHEIFINGER, H. 2002. Changes in European spring phenology. Int. J Climatol., 22(14): 1727-1738. Go to original source...
  2. CHMI. 2009. Methodical instructions number 10 for phenological stations - wild plants. Prague: CHMI.
  3. BARENGO, N. 2001. Nussbaum (Walnussbaum) Juglans regia L. In: PROFESSUR WALDBAU ETHZ, EIDG. FORSTDIREKTION BUWAL (Eds.). Projekt Forderung seltener Baumarten, pp. 1-8. Available at: http://www.seba.ethz.ch/pdfs/wnu.pdfS [Accessed: 2021, August 15].
  4. BEAUBIEN, E. G. and FREELAND, H. J. 2000. Spring phenology trends in Alberta, Canada: links to ocean temperature. International Journal of Biometeorology, 44: 53-59. DOI: https://doi.org/10.1007/s004840000050 Go to original source...
  5. COSMULESCU, S. and IONESCU, M. 2018. Phenological calendar in some walnut genotypes grown in Romania and its correlations with air temperature. International Journal of Biometeorology, 62: 2007-2013. DOI: 10.1007/s00484-018-1606-3 Go to original source...
  6. COUFAL, L., HOUŠKA, V., REITSCHLAGER, J. D., VALTER, J. and VRÁBLÍK, T. 2004. Phenological Atlas. 1st Edition. ČHMI. ISBN 80-86690-21-0
  7. ČREPINŠEK, Z., SOLAR, M., STAMPAR, F. and SOLAR, A. 2009. Shifts in walnut (Juglans regia L.) phenology due to increasing temperatures in Slovenia. Journal of Horticultural Sciance and Biotechnology, 84(1): 59-64. DOI: 10.1080/14620316.2009.11512480 Go to original source...
  8. GAUTHIER, M. M. and JACOBS, D. 2011. Walnut (Juglans spp.) ecophysiology in response to environmental stresses and potential acclimation to climate change. Annals of Forest Science, 68(8): 1277-1290. DOI: 10.1007/s13595-011-0135-6 Go to original source...
  9. GLICKMAN, T. S. (Ed.). 2000. Glossary of meteorology. 2nd Edition. Boston: American Meteorology Society. ISBN 1-878220-34-9
  10. HÁJKOVÁ, L., KOŽNAROVÁ, V., MOŽNÝ, M. and BARTOŠOVÁ, L. 2015. Changes in flowering of birch in the Czech Republic in recent 25 years (1991-2015) in connection with meteorological variables. Acta Agrobot, 68(4): 285-302. DOI: https://doi.org/10.5586/aa.2015.043 Go to original source...
  11. HASSANKHAH, A., VAHDATI, K., RAHEMI, M., HASSANI, D. and KHORAMI, S. s. 2017. Persian Walnut Phenology: Effect of Chilling and Heat Requirements on Budbreak and Flowering Date. International Journal of Horicultural Science and Technology, 4(2): 259-271. DOI: 10.22059/ijhst.2018.260944.249 Go to original source...
  12. HEMERY, G. E. and SAVILL, P. S. 2001. The use of treeshelters and application of stumping in the establishment of walnut (Juglans regia). Forestry, 74(5): 479-789. Go to original source...
  13. CHARRIER, G., CHUINE, I., BONHOMME, M. and AMÉGLIO, T. 2017. Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks.: Frost risks in walnut trees. Plant, Cell & Environment, 41(5): 1008-1021. DOI: doi: 10.1111/pce.12935 Go to original source...
  14. CHMIELEWSKI, F. M., GÖTZ, K. P., WEBER, K. C. et al. 2018. Climate change and spring frost damages for sweet cherries in Germany. Int. J Biometeorol., 62: 217-228. DOI: https://doi.org/10.1007/s00484-017-1443-9 Go to original source...
  15. IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In Press.
  16. KOŽNAROVÁ, V. and KLABZUBA, J. 2010. Traditional and modern methods in weather and climate evaluation in biological disciplines. Prague: Crop Research Institute.
  17. LENZ, A., HOCH, G., KÖRNER, C. and VITASSE, Y. 2015. Convergence of leaf-out towards minimum risk of freezing damage in temperate trees. Functional Ecology, 30(9): 1480-1490. DOI: https://doi.org/10.1111/1365-2435.12623 Go to original source...
  18. LUEDELING, E. and GASSNER, A. 2012. Partial Least Squares Regression for analyzing walnut phenology in California. Agricultural and Forest Meteorology, 158-159: 43-52. DOI: 10.1016/j.agrformet.2011.10.020 Go to original source...
  19. MAUGET, J. C. 1988. Principales caractéristiques de la dormance des bourgeons chez quelques cultivar de noyer: consequence sur la précosité de débourrement et la ramification de l'arbre. Fruits, 43(6): 391-398.
  20. MEIER, U. (Ed.). 1997. Growth stages of mono- and dicotyledonous plants. BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry. Berlin: Blackwell Wissenschafts-Verlag.
  21. MENZEL, A. et al. 2006. European phenological response to climate change matches the warming pattern. Glob. Change Biol., 12(10): 1969-1976. DOI:10.1111/j.1365-2486.2006.01193.x Go to original source...
  22. PAŹ-DYDERSKA, S., JAGODZIŃSKI, A. M. and DYDERSKI, M. K. 2021. Possible changes in spatial distribution of walnut (Juglans regia L.) in Europe under warming climate. Reg. Environ. Change, 21: 18. DOI: https://doi.org/10.1007/s10113-020-01745-z Go to original source...
  23. PIFFLOVÁ, L., BRABLEC, J., LENNER, V. and MINÁŘ, M. 1956. Příručka pro fenologické pozorovatele. D-571503. Praha: Hydrometeorologický ústav Praha.
  24. ROETZER, T., WITTENZELLER, M., HAECKEL, H. and NEKOVÁŘ, J. 2000. Phenology in central Europe - differences and trends of spring phenophases in urban and rural areas. Int. J Biometeorol., 44: 60-66. DOI: https://doi.org/10.1007/s004840000062 Go to original source...
  25. SCHEIFINGER, H. and TEMPL, B. 2016. Is Citizen Science the recipe for the survive of paper-based phenological network in Europe? BioScience, 66(7): 533-534. DOI: https://doi.org/10.1093/biosci/biw069 Go to original source...
  26. SCHWARTZ, M. D., AHAS, R. and AASA, A. 2006. Onset of spring starting earlier across the Northern Hemisphere. Glob. Chang. Biol., 12(2): 343-351. DOI: https://doi.org/10.1111/j.1365-2486.2005.01097.x Go to original source...
  27. TOLASZ, et al. 2007. Climate Atlas of Czechia. 1st Edition. Prague: CHMI, 255 p. ISBN 978-80-86690-26-1
  28. VITASSE, Y., SCHNEIDER, L., RIXEN, C., CHRISTEN, D. and REBETEZ, M. 2018. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agriculture and Forest meteorology, 248: 60-69. DOI: https://doi.org/10.1016/j.agrformet.2017.09.005 Go to original source...
  29. ZAVALLONI, C., ANDRESEN, J. A. and FLORE, J. A. 2006. Phenological models of flower bud stages and fruit growth of "Montmorency" sour cherry based on growing degree-day accumulation. J. Amer. Soc. Hort. Sci., 131(5): 601-607. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.