Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67(3), 733-747 | DOI: 10.11118/actaun201967030733

Catenas of Grain Size and Chemical Forest Soil Properties in Outer Western Carpathians of the Czech Republic Characterized by Principal Component Analysis

Pavel Samec1,2, Tomáš Mikita3, Aleš Bajer3
1 Forest Management Institute Brandýs nad Labem, Nábřežní 1329, CZ-250 01 Brandýs nad Labem, Czech Republic
2 Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00 Brno, Czech Republic
3 Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, CZ-613 00 Brno, Czech Republic

More frequent occurence of hillwashes in altitudinal-differentiated landscapes causes changes of relationships among terrain, bedrock and soils. The aim of the study was to characterize catenas of the terrain-bedrock-soil relationships by PCA of forest soil properties generalized into 2 × 2 km grid in Outer Western Carpathians (OWC) of the Czech Republic. The spatial relationships of the soil catenas with terrain and rocks were verified by ANOVA. Typification of the catenas was carried out by frequencies in the presented terrain and bedrock types according to biogeographical division system. Base saturation, CaO and P2O5 divide forest soils in OWC to ten catenas. The catenas characterized by moderate correspondence of soils and bedrock are concentrated in Outer Depressions, while catenas with moderate correspondence of soils and terrain are concentrated in Flysch Range. The Outer Carpathian Depressions are covered predominantly by floodplains, flat waterlogged, loess-covered and luvic hillycountries (67% of the grid). The Flysch Range is covered predominantly by proluvial slopes, broken hillcountries and submountain to mountain slopes (65% of the grid). The Floodplains, broken nutrient-medium hillycountries and mountain slopes have medium to marked soil horizon properties heterogeneity. The flat landforms, proluvial and submountain slopes have moderate soil properties heterogeneity. The statistical significant differences between values of properties at A and B horizons suggest rate of an surface matter translocation effect on the soil catena heterogeneity.

Keywords: geological environment, hillwashes, soil heterogeneity, soil base saturation
Grants and funding:

The study was supported by the project 304021D067 of the European Commission.

Received: February 11, 2019; Accepted: March 22, 2019; Published: June 27, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Samec, P., Mikita, T., & Bajer, A. (2019). Catenas of Grain Size and Chemical Forest Soil Properties in Outer Western Carpathians of the Czech Republic Characterized by Principal Component Analysis. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis67(3), 733-747. doi: 10.11118/actaun201967030733
Download citation

References

  1. BAUTISTA, F., PALACIO, G., QUINTANA, P. and ZINCK, A. J. 2011. Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatán, Mexico. Geomorphology, 135: 308-321. DOI: 10.1016/j.geomorph.2011.02.014 Go to original source...
  2. BERN, C. R., CHADWICK, O. A., HARTSHORN, A. S., KHOMO, L. M. and CHOROVER, J. 2011. A mass balance model to separate and quantify colloidal and solute redistributions. Chemical Geology, 282(3-4): 113-119. DOI: 10.1016/j.chemgeo.2011.01.014 Go to original source...
  3. BORŮVKA, L., MLÁDKOVÁ, L., PENÍŽEK, V., DRÁBEK, O. and VAŠÁT, R. 2007. Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma, 140(4): 374-382. DOI: 10.1016/j.geoderma.2007.04.018 Go to original source...
  4. BROWN, D. J., CLAYTON, M. K. and MCSWEENEY, K. 2004. Potential terrain controls on soil color, texture contrast and grain-size deposition for the original catena landscape in Uganda. Geoderma, 122(1): 51‒72. DOI: 10.1016/j.geoderma.2003.12.004 Go to original source...
  5. COSTANTINI, E. A. C., PRIORI, S., TROMBINO, L., PROTANO, G., HILGERS, A. and SAUER, D. 2007. Pedogenesis in Quaternary aeolian deposits in the val d'Elsa river basin (central Italy). INQUA 2007 Abstracts. Quaternary International, 167‒168 Supplement: 81.
  6. CULEK, M., BUČEK, A., GRULICH, V., HARTL, P., HRABICA, A., KOCIÁN, J., KYJOVSKÝ, Š. and LACINA, J. 2005. Biogeographical division of the Czech Republic, Part II [in Czech: Biogeografické členění České republiky, II. díl]. Prague: AOPK ČR.
  7. CULEK, M. and GRULICH, V. 2009. Biogeographical division. 1:500 000. In: HRČIANOVÁ, T., MACKOVČIN, P. and ZVARA, I. (Eds.). Landscape Atlas of the Czech Republic. Prague: Ministry of Environment, The Silva Tarouca Research Institute for Landscape and Ornamental Gardering, pp. 150-151.
  8. DEMPSTER, M., DUNLOP, P., SCHEIB, A. and COOPER, M. 2013. Principal component analysis of the geochemistry of soil developed on till in Northern Ireland. Journal of Maps, 9(3): 373-389. DOI: 10.1080/17445647.2013.789414 Go to original source...
  9. FAO. 1998. Topsoil characterization for sustainable land management. Rome: FAO - Land and Water Development Division, Soil Resources, Management and Conservation Service.
  10. FILZMOSER, P., HRON, K. and REIMANN, C. 2009. Principal component analysis for compositional data with outliers. Environmetrics, 20(6): 621-632. DOI: 10.1002/env.966 Go to original source...
  11. HOLUŠA, J., SR. 1995. ACIDITY AND NUTRIENT CONTENT OF FOREST SOILS IN THE BESKIDS [IN CZECH: PŮDNÍ KYSELOST A OBSAH ŽIVIN V LESNÍCH PŮDÁCH BESKYD]. BESKYDY/THE BESKIDS BULLETIN, 7: 191-196.
  12. JACKSON, D. A. and CHEN, Y. 2004. Robust principal analysis and outlier detection with ecological data. Environmetrics, 15(2): 129-139. DOI: 10.1002/env.628 Go to original source...
  13. JANKOVSKÁ, Z. and ŠTĚRBA, P. 2007. National Forest Inventory in the Czech Republic 2001-2004. Introduction, Methods, Results. Barandýs nad Labem: Forest Management Institute Brandýs nad Labem.
  14. LIN, H. 2006. Temporal Stability of Soil Moisture Spatial Pattern and Subsurface Preferential Flow Pathways in the Shale Hills Catchment. Vadose Zone Journal, 5(1): 317‒340. DOI: 10.2136/vzj2005.0058 Go to original source...
  15. KHOMO. L., BERN, C. R., HARTSHORN, A. S., ROGERS, K. H. and CHADWICK, O. A. 2013. Chemical transfers along slowly eroding catenas developed on granitic cratons in southern Africa. Geoderma, 202-203: 192-202. Go to original source...
  16. MACKOVČIN, P., BALATKA, B., DEMEK, J., KIRCHNER, K. and SLAVÍK, P. 2009. Geomorphological units. 1:500 000. In: HRČIANOVÁ, T., MACKOVČIN, P. and ZVARA, I. (Eds.). Landscape Atlas of the Czech Republic. Prague: Ministry of Environment, The Silva Tarouca Research Institute for Landscape and Ornamental Gardering, pp. 50-57.
  17. MACKŮ, J. and HOMOLOVÁ, K. 2007. Forest soil pedogenetic associations of the Czech Republic [in Czech: Pedogenetické asociace lesních půd ČR]. 1:500 000. Brandýs nad Labem: Forest Management Institute Brandýs nad Labem.
  18. MALMER, N. 1986. Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany, 64(2): 375‒383. DOI: 10.1139/b86-054 Go to original source...
  19. MICHÉLI, E., SCHAD, P., SPAARGAREN, O., DENT, D. and NACHTERGAELE, F. (Eds.). 2007. World reference base for soil resources 2006. World Soil Resources Reports 103. Rome: FAO, Rome.
  20. NĚMEČEK, J. and KOZÁK, J. 2003. Approaches to the solution of a soil map of the Czech Republic at the scale 1:250 000 using SOTER methodology. Plant, Soil and Environment, 49(3): 291‒297. DOI: 10.17221/4127-PSE Go to original source...
  21. NĚMEČEK, J., PODLEŠÁKOVÁ, E. and VÁCHA, R. 2001. Predictions of the transfer of trace elements from soils into plants. Rostlinná výroba, 47(10): 425‒432.
  22. NIKLIŃSKA, M. and KLIMEK, B. 2011. Dynamics and stratification of soil biota activity along an altitudinal climatic gradient in West Carpathians. Journal of Biological Research, 16: 177‒187.
  23. PÁNEK, T., SMOLKOVÁ, V., HRADECKÝ, J., BAROŇ, I. and ŠILHÁN, K. 2013. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia). Quaternary Research, 80(1): 33‒46. DOI: 10.1016/j.yqres.2013.03.009 Go to original source...
  24. PELÍŠEK, J. 1973. Vertical soil zonality in the Carpathians of Czechoslovakia. Geoderma, 9(3): 193‒211. DOI: 10.1016/0016-7061(73)90058-X Go to original source...
  25. PHILLIPS, J. D. 2001. The Relative Importance of Instrinsic and Extrinsic Factors in Pedodiversity. Annals of the Association of American Geographers, 91(4): 609‒621. DOI: 10.1111/0004-5608.00261 Go to original source...
  26. PIETRZYK-SOKOLSKA, E. 2012. Geological environment as an important element of the reclamation and revitalization of the quarries. AGH Journal of Mining and Geoengineering, 36(1): 267-274.
  27. SAMEC, P., KUČERA, A. and TUČEK, P. 2014. Fluctuations in the Properties of Forest Soils in the Central European Highlands (Czech Republic). Soil and Water Research, 9(4): 201-213. DOI: 10.17221/68/2013-SWR Go to original source...
  28. SCHAETZL, R. J. and ANDERSON, S. 2005. Soils: Genesis and Geomorphology. New York: Cambridge University Press. Go to original source...
  29. SEDLÁČEK, J., JANDERKOVÁ, J. and ŠEFRNA, L. 2009. Soil associations. 1:500 000. In: HRČIANOVÁ, T., MACKOVČIN, P. and ZVARA, I. (Eds.). Landscape Atlas of the Czech Republic. Prague: Ministry of Environment, The Silva Tarouca Research Institute for Landscape and Ornamental Gardering, pp. 134-135.
  30. SITKOVÁ, Z. and KUNCA, V. 2008. Mapping of the acidity critical loads for forest ecosystem in the Kysuce and Orava regions. Reports of forestry research, 53(2): 147-160.
  31. SOMMER, M. and SCHLICHTING, E. 1997. Archetypes of catenas in respect to matter: a concept for structuring and grouping catenas. Geoderma, 76(1): 1-33. DOI: 10.1016/S0016-7061(96)00095-X Go to original source...
  32. ŠÁLY, R., 1986. Hillwashes and soils of Western Carpathians [in Slovak: Svahoviny a pôdy Západných Karpát]. Bratislava: Veda.
  33. THALIB, L., KITCHING, R. L. and BHATTI, M. I. 1999. Principal component analysis for grouped data-a case study. Environmetrics, 10: 565-574. DOI: 10.1002/(SICI)1099-095X(199909/10)10:53.0.CO;2-R Go to original source...
  34. TYRÁČEK, J. 2011. Continental glaciation of the Moravian Gate (Czech Republic). Antropozoikum, 27: 39-49.
  35. VANMECHELEN, L., GROENEMANS, R. and VAN RANST, E. 1997. Forest Soil Condition in Europe. Results of a Large-Scale Soil Survey., Brussels and Geneva: EC-UN/ECE.
  36. VILLELA, F. N. J., ROSS, J. L. S. and MANFREDINI, S. 2013. Relief-Rock-Soil relationship of Atlantic Plateau to Peripheral Depression, Sao Paulo, Brazil. Journal of Maps, 9(3): 343-352. DOI: 10.1080/17445647.2013.805170 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.