AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.1416
Cite this article
210
Download
465
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Corrosion behavior of selective laser melting-manufactured bio-applicable 316L stainless steel in ionized simulated body fluid

Radim Kocich1,2* Lenka Kunčická2,3 Marek Benč1 Adam Weiser3 Gergely Németh4
Show Less
1 VŠB-Technical University of Ostrava, Faculty of Materials Science and Technology, 17. Listopadu 15, 70833 Ostrava 8, Czech Republic
2 Brno University of Technology, Faculty of Mechanical Engineering, Technická 2896-2, 60200 Brno, Czech Republic
3 Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 61662 Brno, Czech Republic
4 Nuclear Physics Institute, Czech Academy of Sciences, Husinec - Rez 130, 25068 Rez, Czech Republic
IJB 2024, 10(1), 1416 https://doi.org/10.36922/ijb.1416
Submitted: 30 July 2023 | Accepted: 7 September 2023 | Published: 5 January 2024
(This article belongs to the Special Issue 3D Bioprinting for Materials and Application)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing (AM) is gaining increasing popularity in various fields, including biomedical engineering. Although AM enables fabrication of tailored components with complex geometries, the manufactured parts typically feature several internal issues, such as unpredictable distribution of residual stress and printing defects. However, these issues can be reduced or eliminated by post-processing via thermomechanical treatment. The study investigated the effects of combinations of AM and post-processing by the intensive plastic deformation method of rotary swaging (variable swaging ratios) on microstructures, residual stress, and corrosion behaviors of AISI 316L stainless steel workpieces; the corrosion tests were performed in an ionized simulated body fluid. The results showed that the gradual swaging process favorably refined the grains and homogenized the grain size. The imposed swaging ratio also directly influenced the development of substructure and dislocations density. A high density of dislocations positively affected the corrosion resistance, whereas annihilation of dislocations and formation of subgrains had a negative effect on the corrosion behavior. The first few swaging passes homogenized the distribution of residual stress within the workpiece and acted toward imparting a predominantly compressive stress state, which also favorably influenced the corrosion behavior. Lastly, the presence of the {111}||swaging direction texture fiber (of a high intensity) increased the resistance to pitting corrosion. Overall, the most favorable corrosion behavior was acquired for the AM sample subjected to the swaging ratio of 0.8, exhibiting a strong fiber texture and a high density of dislocations.

Keywords
Additive manufacturing
Rotary swaging
316L stainless steel
Electrochemical corrosion
Microstructure
Residual stress
Funding
The work was supported by VŠB–Technical University of Ostrava (project number SP2023/022) and Brno University of Technology (project number FSI-S-23-8231). GN also acknowledges the support by the MEYS infrastructural project LM2023057. Neutron diffraction measurements were carried out at the CANAM infrastructure of the NPI CAS Rez. The employment of the CICRR infrastructure supported by MEYS project LM2023041 is acknowledged.
References
  1. Jalali M, Mohammadi K, Movahhedy MR, et al. SLM additive manufacturing of NiTi porous implants: A review of constitutive models, finite element simulations, manufacturing, heat treatment, mechanical, and biomedical studies. Met Mater Int. 2023;29:2458-2491. doi: 10.1007/s12540-023-01401-1
  2. Kazantseva N, Krakhmalev P, Yadroitsev I, et al. Oxygen and nitrogen concentrations in the Ti-6Al-4V alloy manufactured by direct metal laser sintering (DMLS) process. Mater Lett. 2017;209:311-314. doi: 10.1016/j.matlet.2017.08.037
  3. Dzogbewu TC, Amoah N, Fianko SK, Afrifa Jnr S, de Beer D. Additive manufacturing towards product production: A bibliometric analysis. Manuf Rev. 2022;9:1. doi: 10.1051/mfreview/2021032
  4. Paul AC, Jinoop AN, Paul CP, Deogiri P, Bindra KS. Investigating build geometry characteristics during laser directed energy deposition based additive manufacturing. J Laser Appl. 2020;32(4):042002. doi: 10.2351/7.0000004
  5. Wang Z, Zhang Y, Bernard, A. A constructive solid geometry-based generative design method for additive manufacturing. Addit Manuf. 2021;41(4):101952. doi: 10.1016/j.addma.2021.101952
  6. Weyhrich CW, Long TE. Additive manufacturing of high-performance engineering polymers: Present and future. Polym Int. 2022;71(5):532-536. doi: 10.1002/pi.6343
  7. Nefedovaa LA, Ivkov VI, Sychov MM, Lebedev LA, Dyachenko SV. Additive manufacturing of ceramic insulators. Mater Today Proc. 2020;30(2):520-522. doi: 10.3390/ma16134636
  8. Sotov A, Kantyukov A, Popovich A, Sufiiarov V. A review on additive manufacturing of functional gradient piezoceramic. Micromachines. 2022;13(7):1129. doi: 10.3390/mi13071129
  9. Moreno Madrid AP, Vrech SM, Sanchez MA, Rodriguez AP. Advances in additive manufacturing for bone tissue engineering scaffolds. Mater Sci Eng C. 2019;100(15): 631-644. doi: 10.1016/j.msec.2019.03.037
  10. Dzogbewu TC. Laser powder bed fusion of Ti6Al4V lattice structures and their applications. J Met Mater Miner. 2020;30(4):68-78. doi: 10.55713/jmmm.v30i4.821
  11. Mohammed A, Jiménez A, Bidare, P, et al. Review on engineering of bone scaffolds using conventional and additive manufacturing technologies. 3D Print Addit Manuf. 2023;[online]. doi: 10.1089/3dp.2022.0360
  12. Yamashita Y, Murakami T, Mihara R, Okada M, Murakami Y. Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by additive manufacturing. Procedia Struct Integr. 2017;7:11-18. doi: 10.1016/j.prostr.2017.11.054
  13. Hoefer K, Mayr P. Additive manufacturing of titanium parts using 3D plasma metal deposition. Mater Sci Forum. 2018;941:2137-2141. doi: 10.4028/www.scientific.net/MSF.941.2137
  14. Mclean N, Bermingham MJ, Colegrove P, et al. Effect of hot isostatic pressing and heat treatments on porosity of wire arc additive manufactured Al 2319. J Mater Process Technol. 2022;310:117769. doi: 10.1016/j.jmatprotec.2022.117769
  15. Shakil SI, Smith NR, Yoder SP, et al. Post fabrication thermomechanical processing of additive manufactured metals: A review. J Manuf Process. 2022;73:757-790. doi: 10.1016/j.jmapro.2021.11.047
  16. Kunčická L, Kocich R, Németh G, Dvořák K, Pagáč M. Effect of post process shear straining on structure and mechanical properties of 316 L stainless steel manufactured via powder bed fusion. Addit Manuf. 2022;59(A):103128. doi: 10.1016/j.addma.2022.103128
  17. Kunčická L, Kocich R, Benč M, Dvořák J. Affecting microstructure and properties of additively manufactured AISI 316L steel by rotary swaging. Materials. 2022;15(18):6291. doi: 10.3390/ma15186291
  18. Han W, Fang F. Eco-friendly NaCl-based electrolyte for electropolishing 316L stainless steel. J Manuf Process. 2020;58:1257-1269.
  19. Lee SK, Yun S-H, Joo HG, Noh SJ. Deuterium transport and isotope effects in type 316L stainless steel at high temperatures for nuclear fusion and nuclear hydrogen technology applications. Curr Appl Phys. 2014;14(10):1385-1388. doi: 10.1016/j.cap.2014.08.006
  20. Lin K, Qiao J, Gu D, et al. Active screen plasma nitriding of laser powder bed fusion processed 316L stainless steel for the application of fuel cell bipolar plates. Virtual Phys Prototyp. 2023;18(1):e2225490. doi: 10.1080/17452759.2023.2225490
  21. Romanovski V, Frantskevich V, Kazlouski V, et al. Inappropriate cleaning treatments of stainless steel AISI 316L caused a corrosion failure of a liquid transporter truck. Eng Fail Anal. 2020;117:104938. doi: 10.1016/j.engfailanal.2020.104938
  22. Brooks EK, Brooks RP, Ehrensberger MT. Effects of simulated inflammation on the corrosion of 316L stainless steel. Mater Sci Eng C. 2017;71:200-205. doi: 10.1016/j.msec.2016.10.012
  23. Kunčická L, Kocich R, Lowe TC. Advances in metals and alloys for joint replacement. Prog Mater Sci. 2017;88:232- 280. doi: 10.1016/j.pmatsci.2017.04.002
  24. Kong D, Ni X, Dong C, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim Acta. 2018;276:293-303. doi: 10.1016/j.electacta.2018.04.188
  25. Kocich R, Kunčická L, Macháčková A. Twist channel multi-angular pressing (TCMAP ) as a method for increasing the efficiency of SPD. IOP Conf Ser Mater Sci Eng. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006
  26. Jamili AM, Zarei-Hanzaki A, Abedi HR, Mosayebi M, Kocich R, Kunčická L. Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy. Mater Sci Eng A. 2019;775:138837. doi: 10.1016/j.msea.2019.138837
  27. Hemmasian Ettefagh A, Guo S, Raush J. Corrosion performance of additively manufactured stainless steel parts: A review. Addit Manuf. 2021;37:101689. doi: 10.1016/j.addma.2020.101689
  28. Majumdar JD, Kumar A, Pityana S, Manna I. Laser surface melting of AISI 316L stainless steel for bio-implant application. Proc Natl Acad Sci: Phys Sci. 2018;88:387-403. doi: 10.1007/s40010-018-0524-4
  29. Saboori A, Aversa A, Marchese G, Biamino S, Lombardi M, Fino P. Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: A review. Appl Sci. 2020;10(9):3310. doi: 10.3390/app10093310
  30. Guo P, Zou B, Huang C, Gao H. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition. J Mater Process Technol. 2017;240:12-22. doi: 10.1016/j.jmatprotec.2016.09.005
  31. Yin H, Song M, Deng P, Li L, Prorok BC, Lou X. Thermal stability and microstructural evolution of additively manufactured 316L stainless steel by laser powder bed fusion at 500-800 ℃. Addit Manuf. 2021;41:101981. doi: 10.1016/j.addma.2021.101981
  32. Blinn B, Klein M, Gläßner C, Smaga M, Aurich JC, Beck T. An investigation of the microstructure and fatigue behavior of additively manufactured AISI 316L stainless steel with regard to the influence of heat treatment. Metals. 2018;8(4):220. doi: 10.3390/met8040220
  33. Zanichelli A, Ronchei C, Scorza D, Vantadori S. Fatigue lifetime of both plain and notched specimens made of additively manufactured AISI 316L. J Mater Res Technol. 2022;21: 2532-2546. doi: 10.1016/j.jmrt.2022.10.068
  34. Abroug F, Monnier A, Arnaud L, Balcaen Y, Dalverny O. High cycle fatigue strength of additively manufactured AISI 316L stainless steel parts joined by laser welding. Eng Fract Mech. 2022;275:108865. doi: 10.1016/j.engfracmech.2022.108865
  35. Avanzini A. Fatigue behavior of additively manufactured stainless steel 316L. Materials. 2022;16(1):65. doi: 10.3390/ma16010065
  36. Werner T, Madia M, Zerbst U. Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L. Procedia Struct Integr. 2022;38:554-563. doi: 10.1016/j.prostr.2022.03.056
  37. Machno M, Franczyk E, Bogucki R, Matras A, Zębala W. Comparative study on the structure and quality of SLM and cast AISI 316L samples subjected to WEDM processing. Materials. 2022;15(3):701. doi: 10.3390/ma15030701
  38. Polishetty A, Nomani J, Littlefair G. Evaluating and comparing secondary machining characteristics of wrought and additive manufactured 316L stainless steel. Mater Today Proc, 2023;[online]. doi: 10.1016/j.matpr.2023.05.404
  39. Vinoth V, Sathiyamurthy S, Natarajan U, Venkatkumar D, Prabhakaran J, Prakash KS. Examination of microstructure properties of AISI 316L stainless steel fabricated by wire arc additive manufacturing. Mater Today Proc. 2022;66(7):702-706. doi: 10.1016/j.matpr.2022.04.011
  40. Zach L, Kunčická L, Růžička P, Kocich R. Design, analysis and verification of a knee joint oncological prosthesis finite element model. Comput Biol Med. 2014;54:53-60. doi: 10.1016/j.compbiomed.2014.08.021
  41. Pardo A, Merino MC, Coy AE, Viejo F. Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions. Corros Sci. 2008;50(6):1796-1806. doi: 10.1016/j.corsci.2008.04.005
  42. Shih C-C, Shih C-M, Su Y-Y, Julie Su LH, Chang M-S, Lin S-J. Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros Sci. 2004;46(2):427-441. doi: 10.1016/S0010-938X(03)00148-3
  43. Shahryari A, Omanovic S, Szpunar JA. Electrochemical formation of highly pitting resistant passive films on a biomedical grade 316LVM stainless steel surface. Mater Sci Eng C. 2008;28(1):94-106. doi: 10.1016/j.msec.2007.09.002
  44. Tekdir H, Yetim T, Yetim AF. Corrosion properties of ceramic-based TiO2 films on plasma oxidized Ti6Al4V/316L layered implant structured manufactured by selective laser melting. J Bionic Eng 2021;18:944-957.
  45. Yetim T, Tekdir H, Taftalı M, Turalıoğlu K, Yetim AF. Synthesis and characterisation of single and duplex ZnO/ TiO 2 ceramic films on additively manufactured bimetallic material of 316L stainless steel and Ti6Al4V. Surf Topogr Metrol Prop. 2023;11(2):024005. doi: 10.1088/2051-672X/accf6c
  46. Fredriksson W, Petrini D, Edström K, Björefors F, Nyholm L. Corrosion resistances and passivation of powder metallurgical and conventionally cast 316L and 2205 stainless steels. Corros Sci. 2013;67:268-280. doi: 10.1016/j.corsci.2012.10.021
  47. Geenen K, Röttger A, Theisen W. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting. Mater Corros. 2017;68(7):764-775. doi: 10.1002/maco.201609210
  48. Hardes C, Pöhl F, Röttger A, Thiele M, Theisen W, Esen C. Cavitation erosion resistance of 316L austenitic steel processed by selective laser melting (SLM). Addit Manuf. 2019;29:100786. doi: 10.1016/j.addma.2019.100786
  49. Canelo-Yubero D, Kocich R, Hervoches C, Strunz P, Kunčická L, Kratka L. Neutron diffraction study of residual stresses in a W–Ni–Co heavy alloy processed by rotary swaging at room and high temperatures. Met Mater Int. 2022;28(4):919-930. doi: 10.1007/s12540-020-00963-8
  50. Oyane A, Onuma K, Ito A, Kim H-M, Kokubo T, Nakamura T. Formation and growth of clusters in conventional and new kinds of simulated body fluids. J Biomed Mater Res. 2003;64(2):339-348. doi: 10.1002/jbm.a.10426
  51. Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res. 2003;65(2): 188-195. doi: 10.1002/jbm.a.10482
  52. Oyane A, Onuma K, Ito A, et al. Variation of clusters in simulated body fluids with time. Key Eng Mater. 2001; 218-220:629-632. doi: 10.4028/www.scientific.net/KEM.218-220.629
  53. Kořínek M, Halama R, Fojtík F, et al. Monotonic tension-torsion experiments and FE modeling on notched specimens produced by SLM technology from SS316L. Materials. 2020;14(1):33. doi: 10.3390/MA14010033
  54. Pitassi D, Savoia E, Fontanari V, et al. Finite element thermal analysis of metal parts additively manufactured via selective laser melting. In: Finite Element Method - Simulation, Numerical Analysis and Solution Techniques. 2018. doi: 10.5772/intechopen.71876
  55. Jin M, Piglione A, Dovgyy B, et al. Cyclic plasticity and fatigue damage of CrMnFeCoNi high entropy alloy fabricated by laser powder-bed fusion. Addit Manuf. 2020;36: 101584. doi: 10.48550/arXiv.2007.07043
  56. Dovgyy B, Piglione A, Hooper PA, Pham M-S. Comprehensive assessment of the printability of CoNiCrFeMn in laser powder bed fusion. Mater Des. 2020;194:108845. doi: 10.1016/j.matdes.2020.108845
  57. Elangeswaran C, Cutolo A, Muralidharan GK, et al. Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion. Int J Fatigue. 2019;123:31-39. doi: 10.1016/j.ijfatigue.2019.01.013
  58. Salman OO, Gammer C, Chaubey AK, Eckert J, Scudino S. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Mater Sci Eng A. 2019;748:205-212. doi: 10.1016/j.msea.2019.01.110
  59. Kunčická L, Macháčková A, Krátká L, Kocich R. Analysis of deformation behaviour and residual stress in rotary swaged Cu/Al clad composite wires. Materials. 2019;12(21):3462. doi 10.3390/ma12213462
  60. Zhang Q, Jin K, Mu D. Tube/tube joining technology by using rotary swaging forming method. J Mater Process Technol. 2014;214:2085-2094. doi: 10.1016/j.jmatprotec.2014.02.002
  61. Strunz P, Kunčická L, Beran P, Kocich R, Hervoches C. Correlating microstrain and activated slip systems with mechanical properties within rotary swaged WNiCo pseudoalloy. Materials. 2020;13(1):208. doi: 10.3390/ma13010208
  62. Wang Z, Chen J, Besnard C, Kuncicka L, Kocich R, Korsunsky AM. In situ neutron diffraction investigation of texture-dependent shape memory effect in a near equiatomic NiTi alloy. Acta Mater. 2021;202:135-148. doi: 10.1016/j.actamat.2020.10.049
  63. Wang Z, Chen J, Kocich R, et al. Grain structure engineering of NiTi shape memory alloys by intensive plastic deformation. ACS Appl Mater Interfaces. 2022;14(27):31396- 31410. doi 10.1021/acsami.2c05939
  64. Hervoches C, Mikula P, Vrána M. Recent instrumentation upgrades on the residual strain/stress diffractometer at NPI-Řež, in 53rd International Scientific Conference on Experimental Stress Analysis (EAN 2015), Czech Society for Mechanics, Český Krumlov. 2015;119-120.
  65. Clausen B, Leffers T, Lorentzen T. On the proper selection of reflections for the measurement of bulk residual stresses by diffraction methods. Acta Mater. 2003;51:6181-6188. doi: 10.1016/j.actamat.2003.07.002
  66. Zhong Y, Rännar LE, Liu L, et al. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J Nucl Mater. 2017;486:234-245. doi: 10.1016/J.JNUCMAT.2016.12.042
  67. Martinez-Perez ML, Mompean FJ, Ruiz-Hervias J, et al. Residual stress profiling in the ferrite and cementite phases of cold-drawn steel rods by synchrotron X-ray and neutron diffraction. Acta Mater. 2004;52:5303-5313. doi: 10.1016/J.ACTAMAT.2004.07.036
  68. Zhang Y, Chen W, McDowell DL, Y. Wang M, Zhu T. Lattice strains and diffraction elastic constants of cubic polycrystals. J Mech Phys Solids. 2020;138:103899. doi: 10.1016/j.jmps.2020.103899
  69. Šaroun J, Rebelo-Kornmeier J, Gibmeier J, Hofmann M. Treatment of spatial resolution effects in neutron residual strain scanning. Phys/B. 2018;551:468. doi: 10.1016/J.PHYSB.2018.01.013
  70. Li G, Song Y, Chen X, et al. Preparation, corrosion behavior and biocompatibility of MgFe-layered double hydroxides and calcium hydroxyapatite composite films on 316L stainless steel. Mater Today Commun. 2023;34:105195
  71. Mejía-Caballero I, Palomar-Pardavé M, Martínez Trinidad J, et al. Corrosion behavior of AISI 316L borided and non-borided steels immersed in a simulated body fluid solution. Surf Coatings Technol. 2015;280:384-395 doi: 10.1016/j.surfcoat.2015.08.053
  72. Karimzadeh N, Moghaddam EG, Mirjani M, Raeissi K. The effect of gas mixture of post-oxidation on structure and corrosion behavior of plasma nitrided AISI 316 stainless steel. Appl Surf Sci. 2013;283:584-589. doi: 10.1016/j.apsusc.2013.06.152
  73. Kocich R, Kunčická L. Optimizing structure and properties of Al/Cu laminated conductors via severe shear strain. J Alloys Compd. 2023;953:170124. doi: 10.1016/j.jallcom.2023.170124
  74. Beyerlein IJ, Tóth LS. Texture evolution in equal-channel angular extrusion. Prog Mater Sci. 2009;54(4):427-510. doi: 10.1016/j.pmatsci.2009.01.001
  75. Toth LS, Gilorminis P, Jonas JJ. Effect of rate sensitivity on the stability of torsion textures. Acta Metall. 1988;36(12): 3077-3091. doi: 10.1016/0001-6160(88)90045-4
  76. Li C, Liu ZY, Fang XY, Guo YB. Residual stress in metal additive manufacturing. Procedia CIRP. 2018;71(2): 348-353. doi: 10.1016/j.procir.2018.05.039
  77. Macháčková A, Krátká L, Petrmichl R, Kunčická L, Kocich R. Affecting structure characteristics of rotary swaged tungsten heavy alloy via variable deformation temperature. Materials. 2019;12(24):4200 doi: 10.3390/ma12244200
  78. Kunčická L, Kocich R. Optimizing electric conductivity of innovative Al-Cu laminated composites via thermomechanical treatment. Mater Des. 2022;215(10):110441. doi: 10.1016/j.matdes.2022.110441
  79. Nazarov AA. Disclinations in bulk nanostructured materials: Their origin, relaxation and role in material properties. Adv Nat Sci Nanosci Nanotechnol. 2013;4:033002. doi: 10.1088/2043-6262/4/3/033002
  80. Kong D, Dong C, Ni X, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J Mater Sci Technol. 2019;35(7):1499-1507. doi: 10.1016/j.jmst.2019.03.003
  81. Abbasi Aghuy A, Zakeri M, Moayed MH, Mazinani M. Effect of grain size on pitting corrosion of 304L austenitic stainless steel. Corros Sci. 2015;94:368-376. doi: 10.1016/j.corsci.2015.02.024
  82. Madrigal-Cano M, Hallen JM, Arce-Estrada EM, Le Manh T. Effect of crystallographic texture and microstructure on pitting corrosion behavior of low carbon steels: A Monte Carlo model. Comput Mater Sci. 2019;161:394-402. doi: 10.1016/j.commatsci.2019.02.016
  83. Guo D, Kwok CT, Chan SLI. Spindle speed in friction surfacing of 316L stainless steel – How it affects the microstructure, hardness and pitting corrosion resistance. Surf Coatings Technol. 2019;361(2):324-341. doi: 10.1016/j.surfcoat.2019.01.055
  84. Trisnanto SR, Wang X, Brochu M, Totis G. Effects of crystallographic orientation on the corrosion behavior of stainless steel 316L manufactured by laser powder bed fusion. Corros Sci. 2022;196:110009. doi: 10.1016/j.corsci.2021.110009
  85. Zhang Y, Cheng F, Wu S. Improvement of pitting corrosion resistance of wire arc additive manufactured duplex stainless steel through post-manufacturing heat-treatment. Mater Charact. 2021;171:110743. doi: 10.1016/j.matchar.2020.110743
  86. 86. Kunčická L, Kocich R. Effect of activated slip systems on dynamic recrystallization during rotary swaging of electro-conductive Al-Cu composites. Mater Lett. 2022;321(1):10- 13. doi: 10.1016/j.matlet.2022.132436
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing